- -

An energy-aware algorithm for electric vehicle infrastructures in smart cities

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

An energy-aware algorithm for electric vehicle infrastructures in smart cities

Mostrar el registro completo del ítem

Palanca Cámara, J.; Jordán, J.; Bajo, J.; Botti Navarro, VJ. (2020). An energy-aware algorithm for electric vehicle infrastructures in smart cities. Future Generation Computer Systems. 108:454-466. https://doi.org/10.1016/j.future.2020.03.001

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/168475

Ficheros en el ítem

Metadatos del ítem

Título: An energy-aware algorithm for electric vehicle infrastructures in smart cities
Autor: Palanca Cámara, Javier Jordán, Jaume Bajo, Javier Botti Navarro, Vicente Juan
Entidad UPV: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Fecha difusión:
Resumen:
[EN] The deployment of a charging infrastructure to cover the increasing demand of electric vehicles (EVs) has become a crucial problem in smart cities. Additionally, the penetration of the EV will increase once the users ...[+]
Palabras clave: Electric vehicle , Charging station , Genetic algorithm , Energy , Smart city , Multi-objective , Evolutionary algorithm , Deap , Peru
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Future Generation Computer Systems. (issn: 0167-739X )
DOI: 10.1016/j.future.2020.03.001
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.future.2020.03.001
Código del Proyecto:
info:eu-repo/grantAgreement/UPV//PAID-06-18/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095390-B-C31/ES/HACIA UNA MOVILIDAD INTELIGENTE Y SOSTENIBLE SOPORTADA POR SISTEMAS MULTI-AGENTES Y EDGE COMPUTING/
info:eu-repo/grantAgreement/GVA//APOSTD%2F2018%2F010/
Agradecimientos:
This work was partially supported by MINECO/FEDER, Spain RTI2018-095390-B-C31 project of the Spanish government. Jaume Jordan and Vicent Botti are funded by UPV, Spain PAID-06-18 project. Jaume Jordan is also funded by ...[+]
Tipo: Artículo

References

Gan, L., Topcu, U., & Low, S. H. (2013). Optimal decentralized protocol for electric vehicle charging. IEEE Transactions on Power Systems, 28(2), 940-951. doi:10.1109/tpwrs.2012.2210288

Ma, T., & Mohammed, O. A. (2014). Optimal Charging of Plug-in Electric Vehicles for a Car-Park Infrastructure. IEEE Transactions on Industry Applications, 50(4), 2323-2330. doi:10.1109/tia.2013.2296620

Needell, Z. A., McNerney, J., Chang, M. T., & Trancik, J. E. (2016). Potential for widespread electrification of personal vehicle travel in the United States. Nature Energy, 1(9). doi:10.1038/nenergy.2016.112 [+]
Gan, L., Topcu, U., & Low, S. H. (2013). Optimal decentralized protocol for electric vehicle charging. IEEE Transactions on Power Systems, 28(2), 940-951. doi:10.1109/tpwrs.2012.2210288

Ma, T., & Mohammed, O. A. (2014). Optimal Charging of Plug-in Electric Vehicles for a Car-Park Infrastructure. IEEE Transactions on Industry Applications, 50(4), 2323-2330. doi:10.1109/tia.2013.2296620

Needell, Z. A., McNerney, J., Chang, M. T., & Trancik, J. E. (2016). Potential for widespread electrification of personal vehicle travel in the United States. Nature Energy, 1(9). doi:10.1038/nenergy.2016.112

Franke, T., & Krems, J. F. (2013). Understanding charging behaviour of electric vehicle users. Transportation Research Part F: Traffic Psychology and Behaviour, 21, 75-89. doi:10.1016/j.trf.2013.09.002

Shukla, A., Pekny, J., & Venkatasubramanian, V. (2011). An optimization framework for cost effective design of refueling station infrastructure for alternative fuel vehicles. Computers & Chemical Engineering, 35(8), 1431-1438. doi:10.1016/j.compchemeng.2011.03.018

Nie, Y. (Marco), & Ghamami, M. (2013). A corridor-centric approach to planning electric vehicle charging infrastructure. Transportation Research Part B: Methodological, 57, 172-190. doi:10.1016/j.trb.2013.08.010

Tu, W., Li, Q., Fang, Z., Shaw, S., Zhou, B., & Chang, X. (2016). Optimizing the locations of electric taxi charging stations: A spatial–temporal demand coverage approach. Transportation Research Part C: Emerging Technologies, 65, 172-189. doi:10.1016/j.trc.2015.10.004

Dong, J., Liu, C., & Lin, Z. (2014). Charging infrastructure planning for promoting battery electric vehicles: An activity-based approach using multiday travel data. Transportation Research Part C: Emerging Technologies, 38, 44-55. doi:10.1016/j.trc.2013.11.001

He, J., Yang, H., Tang, T.-Q., & Huang, H.-J. (2018). An optimal charging station location model with the consideration of electric vehicle’s driving range. Transportation Research Part C: Emerging Technologies, 86, 641-654. doi:10.1016/j.trc.2017.11.026

Jordán, J., Palanca, J., del Val, E., Julian, V., & Botti, V. (2018). A Multi-Agent System for the Dynamic Emplacement of Electric Vehicle Charging Stations. Applied Sciences, 8(2), 313. doi:10.3390/app8020313

Jurdak, R., Zhao, K., Liu, J., AbouJaoude, M., Cameron, M., & Newth, D. (2015). Understanding Human Mobility from Twitter. PLOS ONE, 10(7), e0131469. doi:10.1371/journal.pone.0131469

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182-197. doi:10.1109/4235.996017

Coello Coello, C. A. (2002). Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Computer Methods in Applied Mechanics and Engineering, 191(11-12), 1245-1287. doi:10.1016/s0045-7825(01)00323-1

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem