- -

An energy-aware algorithm for electric vehicle infrastructures in smart cities

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

An energy-aware algorithm for electric vehicle infrastructures in smart cities

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Palanca Cámara, Javier es_ES
dc.contributor.author Jordán, Jaume es_ES
dc.contributor.author Bajo, Javier es_ES
dc.contributor.author Botti Navarro, Vicente Juan es_ES
dc.date.accessioned 2021-06-29T03:31:06Z
dc.date.available 2021-06-29T03:31:06Z
dc.date.issued 2020-07 es_ES
dc.identifier.issn 0167-739X es_ES
dc.identifier.uri http://hdl.handle.net/10251/168475
dc.description.abstract [EN] The deployment of a charging infrastructure to cover the increasing demand of electric vehicles (EVs) has become a crucial problem in smart cities. Additionally, the penetration of the EV will increase once the users can have enough charging stations. In this work, we tackle the problem of locating a set of charging stations in a smart city considering heterogeneous data sources such as open data city portals, geo-located social network data, and energy transformer substations. We use a multi-objective genetic algorithm to optimize the charging station locations by maximizing the utility and minimizing the cost. Our proposal is validated through a case study and several experimental results. es_ES
dc.description.sponsorship This work was partially supported by MINECO/FEDER, Spain RTI2018-095390-B-C31 project of the Spanish government. Jaume Jordan and Vicent Botti are funded by UPV, Spain PAID-06-18 project. Jaume Jordan is also funded by grant APOSTD/2018/010 of Generalitat Valenciana -Fondo Social Europeo, Spain. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Future Generation Computer Systems es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Electric vehicle es_ES
dc.subject Charging station es_ES
dc.subject Genetic algorithm es_ES
dc.subject Energy es_ES
dc.subject Smart city es_ES
dc.subject Multi-objective es_ES
dc.subject Evolutionary algorithm es_ES
dc.subject Deap es_ES
dc.subject Peru es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title An energy-aware algorithm for electric vehicle infrastructures in smart cities es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.future.2020.03.001 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-06-18/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095390-B-C31/ES/HACIA UNA MOVILIDAD INTELIGENTE Y SOSTENIBLE SOPORTADA POR SISTEMAS MULTI-AGENTES Y EDGE COMPUTING/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//APOSTD%2F2018%2F010/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Palanca Cámara, J.; Jordán, J.; Bajo, J.; Botti Navarro, VJ. (2020). An energy-aware algorithm for electric vehicle infrastructures in smart cities. Future Generation Computer Systems. 108:454-466. https://doi.org/10.1016/j.future.2020.03.001 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.future.2020.03.001 es_ES
dc.description.upvformatpinicio 454 es_ES
dc.description.upvformatpfin 466 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 108 es_ES
dc.relation.pasarela S\406244 es_ES
dc.contributor.funder European Social Fund es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder UNIVERSIDAD POLITECNICA DE VALENCIA es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Gan, L., Topcu, U., & Low, S. H. (2013). Optimal decentralized protocol for electric vehicle charging. IEEE Transactions on Power Systems, 28(2), 940-951. doi:10.1109/tpwrs.2012.2210288 es_ES
dc.description.references Ma, T., & Mohammed, O. A. (2014). Optimal Charging of Plug-in Electric Vehicles for a Car-Park Infrastructure. IEEE Transactions on Industry Applications, 50(4), 2323-2330. doi:10.1109/tia.2013.2296620 es_ES
dc.description.references Needell, Z. A., McNerney, J., Chang, M. T., & Trancik, J. E. (2016). Potential for widespread electrification of personal vehicle travel in the United States. Nature Energy, 1(9). doi:10.1038/nenergy.2016.112 es_ES
dc.description.references Franke, T., & Krems, J. F. (2013). Understanding charging behaviour of electric vehicle users. Transportation Research Part F: Traffic Psychology and Behaviour, 21, 75-89. doi:10.1016/j.trf.2013.09.002 es_ES
dc.description.references Shukla, A., Pekny, J., & Venkatasubramanian, V. (2011). An optimization framework for cost effective design of refueling station infrastructure for alternative fuel vehicles. Computers & Chemical Engineering, 35(8), 1431-1438. doi:10.1016/j.compchemeng.2011.03.018 es_ES
dc.description.references Nie, Y. (Marco), & Ghamami, M. (2013). A corridor-centric approach to planning electric vehicle charging infrastructure. Transportation Research Part B: Methodological, 57, 172-190. doi:10.1016/j.trb.2013.08.010 es_ES
dc.description.references Tu, W., Li, Q., Fang, Z., Shaw, S., Zhou, B., & Chang, X. (2016). Optimizing the locations of electric taxi charging stations: A spatial–temporal demand coverage approach. Transportation Research Part C: Emerging Technologies, 65, 172-189. doi:10.1016/j.trc.2015.10.004 es_ES
dc.description.references Dong, J., Liu, C., & Lin, Z. (2014). Charging infrastructure planning for promoting battery electric vehicles: An activity-based approach using multiday travel data. Transportation Research Part C: Emerging Technologies, 38, 44-55. doi:10.1016/j.trc.2013.11.001 es_ES
dc.description.references He, J., Yang, H., Tang, T.-Q., & Huang, H.-J. (2018). An optimal charging station location model with the consideration of electric vehicle’s driving range. Transportation Research Part C: Emerging Technologies, 86, 641-654. doi:10.1016/j.trc.2017.11.026 es_ES
dc.description.references Jordán, J., Palanca, J., del Val, E., Julian, V., & Botti, V. (2018). A Multi-Agent System for the Dynamic Emplacement of Electric Vehicle Charging Stations. Applied Sciences, 8(2), 313. doi:10.3390/app8020313 es_ES
dc.description.references Jurdak, R., Zhao, K., Liu, J., AbouJaoude, M., Cameron, M., & Newth, D. (2015). Understanding Human Mobility from Twitter. PLOS ONE, 10(7), e0131469. doi:10.1371/journal.pone.0131469 es_ES
dc.description.references Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182-197. doi:10.1109/4235.996017 es_ES
dc.description.references Coello Coello, C. A. (2002). Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Computer Methods in Applied Mechanics and Engineering, 191(11-12), 1245-1287. doi:10.1016/s0045-7825(01)00323-1 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem