- -

Nozzle rate of injection estimation from hole to hole momentum flux data with different fossil and renewable fuels

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Nozzle rate of injection estimation from hole to hole momentum flux data with different fossil and renewable fuels

Mostrar el registro completo del ítem

Payri, R.; Bracho Leon, G.; Soriano, JA.; Fernández-Yáñez, P.; Armas, O. (2020). Nozzle rate of injection estimation from hole to hole momentum flux data with different fossil and renewable fuels. Fuel. 279:1-10. https://doi.org/10.1016/j.fuel.2020.118404

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/168481

Ficheros en el ítem

Metadatos del ítem

Título: Nozzle rate of injection estimation from hole to hole momentum flux data with different fossil and renewable fuels
Autor: Payri, Raul Bracho Leon, Gabriela Soriano, J. A. Fernández-Yáñez, P. Armas, O.
Entidad UPV: Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Fecha difusión:
Resumen:
[EN] Due to environmental problems, research on fuel economy and pollutant emissions in internal combustion engines has drawn the attention of automobile manufacturers and researchers. The diesel engine is one of the most ...[+]
Palabras clave: Diesel , Farnesane , GTL , Biodiesel , Rate of injection , Momentum flux
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Fuel. (issn: 0016-2361 )
DOI: 10.1016/j.fuel.2020.118404
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.fuel.2020.118404
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095923-B-C21/ES/RECUPERACION DE ENERGIAS RESIDUALES EN VEHICULOS LIGEROS. IMPACTO TECNOLOGICO./
info:eu-repo/grantAgreement/JCCM//SBPLY%2F19%2F180501%2F000116/
Agradecimientos:
Authors wish to thank the financial support provided by: i) the Spanish Ministry of Science, Innovation and Universities to the project RECUPERA, Ref. Ref.: RTI2018-095923-B-C21 and ii) the government of Castilla-La Mancha ...[+]
Tipo: Artículo

References

Johnson, T. V. (2011). Diesel Emissions in Review. SAE International Journal of Engines, 4(1), 143-157. doi:10.4271/2011-01-0304

Musculus, M. P. B., Miles, P. C., & Pickett, L. M. (2013). Conceptual models for partially premixed low-temperature diesel combustion. Progress in Energy and Combustion Science, 39(2-3), 246-283. doi:10.1016/j.pecs.2012.09.001

Han, S., Kim, J., & Bae, C. (2014). Effect of air–fuel mixing quality on characteristics of conventional and low temperature diesel combustion. Applied Energy, 119, 454-466. doi:10.1016/j.apenergy.2013.12.045 [+]
Johnson, T. V. (2011). Diesel Emissions in Review. SAE International Journal of Engines, 4(1), 143-157. doi:10.4271/2011-01-0304

Musculus, M. P. B., Miles, P. C., & Pickett, L. M. (2013). Conceptual models for partially premixed low-temperature diesel combustion. Progress in Energy and Combustion Science, 39(2-3), 246-283. doi:10.1016/j.pecs.2012.09.001

Han, S., Kim, J., & Bae, C. (2014). Effect of air–fuel mixing quality on characteristics of conventional and low temperature diesel combustion. Applied Energy, 119, 454-466. doi:10.1016/j.apenergy.2013.12.045

Korkmaz, M., Ritter, D., Jochim, B., Beeckmann, J., Abel, D., & Pitsch, H. (2019). Effects of injection strategy on performance and emissions metrics in a diesel/methane dual-fuel single-cylinder compression ignition engine. International Journal of Engine Research, 20(10), 1059-1072. doi:10.1177/1468087419836586

Desantes, J. M., García-Oliver, J. M., García, A., & Xuan, T. (2018). Optical study on characteristics of non-reacting and reacting diesel spray with different strategies of split injection. International Journal of Engine Research, 20(6), 606-623. doi:10.1177/1468087418773012

Carlucci, P., Ficarella, A., & Laforgia, D. (2005). Effects on combustion and emissions of early and pilot fuel injections in diesel engines. International Journal of Engine Research, 6(1), 43-60. doi:10.1243/146808705x7301

O’Connor, J., & Musculus, M. (2013). Effects of exhaust gas recirculation and load on soot in a heavy-duty optical diesel engine with close-coupled post injections for high-efficiency combustion phasing. International Journal of Engine Research, 15(4), 421-443. doi:10.1177/1468087413488767

Park, C., & Busch, S. (2017). The influence of pilot injection on high-temperature ignition processes and early flame structure in a high-speed direct injection diesel engine. International Journal of Engine Research, 19(6), 668-681. doi:10.1177/1468087417728630

Herfatmanesh, M. R., Lu, P., Attar, M. A., & Zhao, H. (2013). Experimental investigation into the effects of two-stage injection on fuel injection quantity, combustion and emissions in a high-speed optical common rail diesel engine. Fuel, 109, 137-147. doi:10.1016/j.fuel.2013.01.013

Xu-Guang, T., Hai-Lang, S., Tao, Q., Zhi-Qiang, F., & Wen-Hui, Y. (2012). The Impact of Common Rail System’s Control Parameters on the Performance of High-power Diesel. Energy Procedia, 16, 2067-2072. doi:10.1016/j.egypro.2012.01.314

Bosch W. The Fuel Rate Indicator: A New Measuring Instrument For Display of the Characteristics of Individual Injection, 1966, p. 660749. https://doi.org/10.4271/660749.

Payri, R., Salvador, F. J., Gimeno, J., & Bracho, G. (2008). A NEW METHODOLOGY FOR CORRECTING THE SIGNAL CUMULATIVE PHENOMENON ON INJECTION RATE MEASUREMENTS. Experimental Techniques, 32(1), 46-49. doi:10.1111/j.1747-1567.2007.00188.x

PAYRI, R., GARCIA, J., SALVADOR, F., & GIMENO, J. (2005). Using spray momentum flux measurements to understand the influence of diesel nozzle geometry on spray characteristics. Fuel, 84(5), 551-561. doi:10.1016/j.fuel.2004.10.009

Postrioti, L., Mariani, F., & Battistoni, M. (2012). Experimental and numerical momentum flux evaluation of high pressure Diesel spray. Fuel, 98, 149-163. doi:10.1016/j.fuel.2012.03.043

Payri R, Gimeno J, Marti-Aldaravi P, Vaquerizo D. Momentum flux measurements on an ECN GDi injector, SAE Technical Paper, 2015, 2015–01–1893.

Payri, R., Gimeno, J., Mata, C., & Viera, A. (2017). Rate of injection measurements of a direct-acting piezoelectric injector for different operating temperatures. Energy Conversion and Management, 154, 387-393. doi:10.1016/j.enconman.2017.11.029

Desantes JM, Payri R, Salvador FJ, Gimeno J. “Prediction of Spray Penetration by Means of Spray Momentum Flux,” SAE Technical Paper 2006-01-1387, 2006.

Soriano, J. A., Mata, C., Armas, O., & Ávila, C. (2018). A zero-dimensional model to simulate injection rate from first generation common rail diesel injectors under thermodynamic diagnosis. Energy, 158, 845-858. doi:10.1016/j.energy.2018.06.054

Zhu X, Limbu S, Cung K, De Ojeda W, Lee S-Y. HEUI Injector Modeling and ROI Experiments for High Injection Pressure of Diesel and Dimethyl Ether (DME), 2016, p. 2016-01–0855. https://doi.org/10.4271/2016-01-0855.

Mancaruso E, Marialto R, Sequino L, Vaglieco BM. Comparison of Spray Characteristics Measured in an Optical Single Cylinder Diesel Engine with 1D Model, 2014, p. 2014-01–1424. https://doi.org/10.4271/2014-01-1424.

Musculus, M. P. B., & Kattke, K. (2009). Entrainment Waves in Diesel Jets. SAE International Journal of Engines, 2(1), 1170-1193. doi:10.4271/2009-01-1355

Shu, J., Fu, J., Liu, J., Ma, Y., Wang, S., Deng, B., & Zeng, D. (2019). Effects of injector spray angle on combustion and emissions characteristics of a natural gas (NG)-diesel dual fuel engine based on CFD coupled with reduced chemical kinetic model. Applied Energy, 233-234, 182-195. doi:10.1016/j.apenergy.2018.10.040

Asadi, A., Zhang, Y., Mohammadi, H., Khorand, H., Rui, Z., Doranehgard, M. H., & Bozorg, M. V. (2019). Combustion and emission characteristics of biomass derived biofuel, premixed in a diesel engine: A CFD study. Renewable Energy, 138, 79-89. doi:10.1016/j.renene.2019.01.069

Fernández-Yáñez, P., Armas, O., Gómez, A., & Gil, A. (2017). Developing Computational Fluid Dynamics (CFD) Models to Evaluate Available Energy in Exhaust Systems of Diesel Light-Duty Vehicles. Applied Sciences, 7(6), 590. doi:10.3390/app7060590

Gholinia, M., Pourfallah, M., & Chamani, H. R. (2018). Numerical investigation of heat transfers in the water jacket of heavy duty diesel engine by considering boiling phenomenon. Case Studies in Thermal Engineering, 12, 497-509. doi:10.1016/j.csite.2018.07.003

Fontanesi, S., & Giacopini, M. (2013). Multiphase CFD–CHT optimization of the cooling jacket and FEM analysis of the engine head of a V6 diesel engine. Applied Thermal Engineering, 52(2), 293-303. doi:10.1016/j.applthermaleng.2012.12.005

Fernández-Yáñez, P., Armas, O., & Martínez-Martínez, S. (2016). Impact of relative position vehicle-wind blower in a roller test bench under climatic chamber. Applied Thermal Engineering, 106, 266-274. doi:10.1016/j.applthermaleng.2016.06.021

Wang, G., Gao, Q., Zhang, T., & Wang, Y. (2016). A simulation approach of under-hood thermal management. Advances in Engineering Software, 100, 43-52. doi:10.1016/j.advengsoft.2016.06.010

Payri, R., De la Morena, J., Pagano, V., Hussain, A., Sammut, G., & Smith, L. (2018). One-dimensional modeling of the interaction between close-coupled injection events for a ballistic solenoid injector. International Journal of Engine Research, 20(4), 452-469. doi:10.1177/1468087418760973

Mulemane A, Han J-S, Lu P-H, Yoon S-J, Lai M-C. Modeling Dynamic Behavior of Diesel Fuel Injection Systems, 2004, p. 2004-01–0536. https://doi.org/10.4271/2004-01-0536.

Postrioti, L., Mariani, F., Battistoni, M., & Mariani, A. (2009). Experimental and Numerical Evaluation of Diesel Spray Momentum Flux. SAE International Journal of Engines, 2(2), 287-299. doi:10.4271/2009-01-2772

Payri, R., Gimeno, J., Cuisano, J., & Arco, J. (2016). Hydraulic characterization of diesel engine single-hole injectors. Fuel, 180, 357-366. doi:10.1016/j.fuel.2016.03.083

Salvador, F. J., Gimeno, J., Carreres, M., & Crialesi-Esposito, M. (2016). Fuel temperature influence on the performance of a last generation common-rail diesel ballistic injector. Part I: Experimental mass flow rate measurements and discussion. Energy Conversion and Management, 114, 364-375. doi:10.1016/j.enconman.2016.02.042

Viera, J. P., Payri, R., Swantek, A. B., Duke, D. J., Sovis, N., Kastengren, A. L., & Powell, C. F. (2016). Linking instantaneous rate of injection to X-ray needle lift measurements for a direct-acting piezoelectric injector. Energy Conversion and Management, 112, 350-358. doi:10.1016/j.enconman.2016.01.038

Desantes, J. M., Payri, R., Garcia, J. M., & Salvador, F. J. (2007). A contribution to the understanding of isothermal diesel spray dynamics. Fuel, 86(7-8), 1093-1101. doi:10.1016/j.fuel.2006.10.011

Soriano, J. A., García-Contreras, R., Gómez, A., & Mata, C. (2019). Comparative study of the effect of a new renewable paraffinic fuel on the combustion process of a light-duty diesel engine. Energy, 189, 116337. doi:10.1016/j.energy.2019.116337

Soriano, J.A., García-Contreras, R Leiva-Candia, D. Soto, F. Influence on Performance and Emissions of an Automotive Diesel Engine Fueled with Biodiesel and Paraffinic Fuels: GTL and Biojet Fuel Farnesane. Energy and Fuels 2018 32(4), pp. 5125-5133 DOI: 10.1021/acs.energyfuels.7b03779.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem