Mostrar el registro sencillo del ítem
dc.contributor.author | Payri, Raul | es_ES |
dc.contributor.author | Bracho Leon, Gabriela | es_ES |
dc.contributor.author | Soriano, J. A. | es_ES |
dc.contributor.author | Fernández-Yáñez, P. | es_ES |
dc.contributor.author | Armas, O. | es_ES |
dc.date.accessioned | 2021-06-29T03:31:21Z | |
dc.date.available | 2021-06-29T03:31:21Z | |
dc.date.issued | 2020-11-01 | es_ES |
dc.identifier.issn | 0016-2361 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/168481 | |
dc.description.abstract | [EN] Due to environmental problems, research on fuel economy and pollutant emissions in internal combustion engines has drawn the attention of automobile manufacturers and researchers. The diesel engine is one of the most efficient alternatives and one of the main areas of the study in these engines is spray mixing, recognized as a critical factor in combustion control and the reduction of its related contaminants. The studies about fuel sprays rely on experimental data of the rate of injection, which can only be obtained with high-cost equipment. The aim of this paper is to validate for different fuels a method for the determination of the rate of injection based on spray momentum measurements and the total injected mass. After a proper tuning of the test momentum flux device, the injection rate results were validated using the Bosch tube method. The technique was validated for four different fuels, diesel, biodiesel, GTL (Gas-to-liquid) and Farnesane, in order to identify the consequences of the fuel properties on the injection performance characteristics and the estimation method. The results of rate of injection following the procedures presented showed good accuracy when compared to experimental values. These methods can be employed to estimate this parameter when experimental facilities for this purpose are not available. | es_ES |
dc.description.sponsorship | Authors wish to thank the financial support provided by: i) the Spanish Ministry of Science, Innovation and Universities to the project RECUPERA, Ref. Ref.: RTI2018-095923-B-C21 and ii) the government of Castilla-La Mancha community to the project ASUAV, Ref. SBPLY/19/180501/000116. Authors also want to thank: i) the companies REPSOL, SASOL and AMYRIS by the fuels supply, ii) the technical support provided by Nissan Europe Technology Centre Spain. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Fuel | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Diesel | es_ES |
dc.subject | Farnesane | es_ES |
dc.subject | GTL | es_ES |
dc.subject | Biodiesel | es_ES |
dc.subject | Rate of injection | es_ES |
dc.subject | Momentum flux | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Nozzle rate of injection estimation from hole to hole momentum flux data with different fossil and renewable fuels | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.fuel.2020.118404 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095923-B-C21/ES/RECUPERACION DE ENERGIAS RESIDUALES EN VEHICULOS LIGEROS. IMPACTO TECNOLOGICO./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/JCCM//SBPLY%2F19%2F180501%2F000116/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics | es_ES |
dc.description.bibliographicCitation | Payri, R.; Bracho Leon, G.; Soriano, JA.; Fernández-Yáñez, P.; Armas, O. (2020). Nozzle rate of injection estimation from hole to hole momentum flux data with different fossil and renewable fuels. Fuel. 279:1-10. https://doi.org/10.1016/j.fuel.2020.118404 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.fuel.2020.118404 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 10 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 279 | es_ES |
dc.relation.pasarela | S\414318 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Junta de Comunidades de Castilla-La Mancha | es_ES |
dc.description.references | Johnson, T. V. (2011). Diesel Emissions in Review. SAE International Journal of Engines, 4(1), 143-157. doi:10.4271/2011-01-0304 | es_ES |
dc.description.references | Musculus, M. P. B., Miles, P. C., & Pickett, L. M. (2013). Conceptual models for partially premixed low-temperature diesel combustion. Progress in Energy and Combustion Science, 39(2-3), 246-283. doi:10.1016/j.pecs.2012.09.001 | es_ES |
dc.description.references | Han, S., Kim, J., & Bae, C. (2014). Effect of air–fuel mixing quality on characteristics of conventional and low temperature diesel combustion. Applied Energy, 119, 454-466. doi:10.1016/j.apenergy.2013.12.045 | es_ES |
dc.description.references | Korkmaz, M., Ritter, D., Jochim, B., Beeckmann, J., Abel, D., & Pitsch, H. (2019). Effects of injection strategy on performance and emissions metrics in a diesel/methane dual-fuel single-cylinder compression ignition engine. International Journal of Engine Research, 20(10), 1059-1072. doi:10.1177/1468087419836586 | es_ES |
dc.description.references | Desantes, J. M., García-Oliver, J. M., García, A., & Xuan, T. (2018). Optical study on characteristics of non-reacting and reacting diesel spray with different strategies of split injection. International Journal of Engine Research, 20(6), 606-623. doi:10.1177/1468087418773012 | es_ES |
dc.description.references | Carlucci, P., Ficarella, A., & Laforgia, D. (2005). Effects on combustion and emissions of early and pilot fuel injections in diesel engines. International Journal of Engine Research, 6(1), 43-60. doi:10.1243/146808705x7301 | es_ES |
dc.description.references | O’Connor, J., & Musculus, M. (2013). Effects of exhaust gas recirculation and load on soot in a heavy-duty optical diesel engine with close-coupled post injections for high-efficiency combustion phasing. International Journal of Engine Research, 15(4), 421-443. doi:10.1177/1468087413488767 | es_ES |
dc.description.references | Park, C., & Busch, S. (2017). The influence of pilot injection on high-temperature ignition processes and early flame structure in a high-speed direct injection diesel engine. International Journal of Engine Research, 19(6), 668-681. doi:10.1177/1468087417728630 | es_ES |
dc.description.references | Herfatmanesh, M. R., Lu, P., Attar, M. A., & Zhao, H. (2013). Experimental investigation into the effects of two-stage injection on fuel injection quantity, combustion and emissions in a high-speed optical common rail diesel engine. Fuel, 109, 137-147. doi:10.1016/j.fuel.2013.01.013 | es_ES |
dc.description.references | Xu-Guang, T., Hai-Lang, S., Tao, Q., Zhi-Qiang, F., & Wen-Hui, Y. (2012). The Impact of Common Rail System’s Control Parameters on the Performance of High-power Diesel. Energy Procedia, 16, 2067-2072. doi:10.1016/j.egypro.2012.01.314 | es_ES |
dc.description.references | Bosch W. The Fuel Rate Indicator: A New Measuring Instrument For Display of the Characteristics of Individual Injection, 1966, p. 660749. https://doi.org/10.4271/660749. | es_ES |
dc.description.references | Payri, R., Salvador, F. J., Gimeno, J., & Bracho, G. (2008). A NEW METHODOLOGY FOR CORRECTING THE SIGNAL CUMULATIVE PHENOMENON ON INJECTION RATE MEASUREMENTS. Experimental Techniques, 32(1), 46-49. doi:10.1111/j.1747-1567.2007.00188.x | es_ES |
dc.description.references | PAYRI, R., GARCIA, J., SALVADOR, F., & GIMENO, J. (2005). Using spray momentum flux measurements to understand the influence of diesel nozzle geometry on spray characteristics. Fuel, 84(5), 551-561. doi:10.1016/j.fuel.2004.10.009 | es_ES |
dc.description.references | Postrioti, L., Mariani, F., & Battistoni, M. (2012). Experimental and numerical momentum flux evaluation of high pressure Diesel spray. Fuel, 98, 149-163. doi:10.1016/j.fuel.2012.03.043 | es_ES |
dc.description.references | Payri R, Gimeno J, Marti-Aldaravi P, Vaquerizo D. Momentum flux measurements on an ECN GDi injector, SAE Technical Paper, 2015, 2015–01–1893. | es_ES |
dc.description.references | Payri, R., Gimeno, J., Mata, C., & Viera, A. (2017). Rate of injection measurements of a direct-acting piezoelectric injector for different operating temperatures. Energy Conversion and Management, 154, 387-393. doi:10.1016/j.enconman.2017.11.029 | es_ES |
dc.description.references | Desantes JM, Payri R, Salvador FJ, Gimeno J. “Prediction of Spray Penetration by Means of Spray Momentum Flux,” SAE Technical Paper 2006-01-1387, 2006. | es_ES |
dc.description.references | Soriano, J. A., Mata, C., Armas, O., & Ávila, C. (2018). A zero-dimensional model to simulate injection rate from first generation common rail diesel injectors under thermodynamic diagnosis. Energy, 158, 845-858. doi:10.1016/j.energy.2018.06.054 | es_ES |
dc.description.references | Zhu X, Limbu S, Cung K, De Ojeda W, Lee S-Y. HEUI Injector Modeling and ROI Experiments for High Injection Pressure of Diesel and Dimethyl Ether (DME), 2016, p. 2016-01–0855. https://doi.org/10.4271/2016-01-0855. | es_ES |
dc.description.references | Mancaruso E, Marialto R, Sequino L, Vaglieco BM. Comparison of Spray Characteristics Measured in an Optical Single Cylinder Diesel Engine with 1D Model, 2014, p. 2014-01–1424. https://doi.org/10.4271/2014-01-1424. | es_ES |
dc.description.references | Musculus, M. P. B., & Kattke, K. (2009). Entrainment Waves in Diesel Jets. SAE International Journal of Engines, 2(1), 1170-1193. doi:10.4271/2009-01-1355 | es_ES |
dc.description.references | Shu, J., Fu, J., Liu, J., Ma, Y., Wang, S., Deng, B., & Zeng, D. (2019). Effects of injector spray angle on combustion and emissions characteristics of a natural gas (NG)-diesel dual fuel engine based on CFD coupled with reduced chemical kinetic model. Applied Energy, 233-234, 182-195. doi:10.1016/j.apenergy.2018.10.040 | es_ES |
dc.description.references | Asadi, A., Zhang, Y., Mohammadi, H., Khorand, H., Rui, Z., Doranehgard, M. H., & Bozorg, M. V. (2019). Combustion and emission characteristics of biomass derived biofuel, premixed in a diesel engine: A CFD study. Renewable Energy, 138, 79-89. doi:10.1016/j.renene.2019.01.069 | es_ES |
dc.description.references | Fernández-Yáñez, P., Armas, O., Gómez, A., & Gil, A. (2017). Developing Computational Fluid Dynamics (CFD) Models to Evaluate Available Energy in Exhaust Systems of Diesel Light-Duty Vehicles. Applied Sciences, 7(6), 590. doi:10.3390/app7060590 | es_ES |
dc.description.references | Gholinia, M., Pourfallah, M., & Chamani, H. R. (2018). Numerical investigation of heat transfers in the water jacket of heavy duty diesel engine by considering boiling phenomenon. Case Studies in Thermal Engineering, 12, 497-509. doi:10.1016/j.csite.2018.07.003 | es_ES |
dc.description.references | Fontanesi, S., & Giacopini, M. (2013). Multiphase CFD–CHT optimization of the cooling jacket and FEM analysis of the engine head of a V6 diesel engine. Applied Thermal Engineering, 52(2), 293-303. doi:10.1016/j.applthermaleng.2012.12.005 | es_ES |
dc.description.references | Fernández-Yáñez, P., Armas, O., & Martínez-Martínez, S. (2016). Impact of relative position vehicle-wind blower in a roller test bench under climatic chamber. Applied Thermal Engineering, 106, 266-274. doi:10.1016/j.applthermaleng.2016.06.021 | es_ES |
dc.description.references | Wang, G., Gao, Q., Zhang, T., & Wang, Y. (2016). A simulation approach of under-hood thermal management. Advances in Engineering Software, 100, 43-52. doi:10.1016/j.advengsoft.2016.06.010 | es_ES |
dc.description.references | Payri, R., De la Morena, J., Pagano, V., Hussain, A., Sammut, G., & Smith, L. (2018). One-dimensional modeling of the interaction between close-coupled injection events for a ballistic solenoid injector. International Journal of Engine Research, 20(4), 452-469. doi:10.1177/1468087418760973 | es_ES |
dc.description.references | Mulemane A, Han J-S, Lu P-H, Yoon S-J, Lai M-C. Modeling Dynamic Behavior of Diesel Fuel Injection Systems, 2004, p. 2004-01–0536. https://doi.org/10.4271/2004-01-0536. | es_ES |
dc.description.references | Postrioti, L., Mariani, F., Battistoni, M., & Mariani, A. (2009). Experimental and Numerical Evaluation of Diesel Spray Momentum Flux. SAE International Journal of Engines, 2(2), 287-299. doi:10.4271/2009-01-2772 | es_ES |
dc.description.references | Payri, R., Gimeno, J., Cuisano, J., & Arco, J. (2016). Hydraulic characterization of diesel engine single-hole injectors. Fuel, 180, 357-366. doi:10.1016/j.fuel.2016.03.083 | es_ES |
dc.description.references | Salvador, F. J., Gimeno, J., Carreres, M., & Crialesi-Esposito, M. (2016). Fuel temperature influence on the performance of a last generation common-rail diesel ballistic injector. Part I: Experimental mass flow rate measurements and discussion. Energy Conversion and Management, 114, 364-375. doi:10.1016/j.enconman.2016.02.042 | es_ES |
dc.description.references | Viera, J. P., Payri, R., Swantek, A. B., Duke, D. J., Sovis, N., Kastengren, A. L., & Powell, C. F. (2016). Linking instantaneous rate of injection to X-ray needle lift measurements for a direct-acting piezoelectric injector. Energy Conversion and Management, 112, 350-358. doi:10.1016/j.enconman.2016.01.038 | es_ES |
dc.description.references | Desantes, J. M., Payri, R., Garcia, J. M., & Salvador, F. J. (2007). A contribution to the understanding of isothermal diesel spray dynamics. Fuel, 86(7-8), 1093-1101. doi:10.1016/j.fuel.2006.10.011 | es_ES |
dc.description.references | Soriano, J. A., García-Contreras, R., Gómez, A., & Mata, C. (2019). Comparative study of the effect of a new renewable paraffinic fuel on the combustion process of a light-duty diesel engine. Energy, 189, 116337. doi:10.1016/j.energy.2019.116337 | es_ES |
dc.description.references | Soriano, J.A., García-Contreras, R Leiva-Candia, D. Soto, F. Influence on Performance and Emissions of an Automotive Diesel Engine Fueled with Biodiesel and Paraffinic Fuels: GTL and Biojet Fuel Farnesane. Energy and Fuels 2018 32(4), pp. 5125-5133 DOI: 10.1021/acs.energyfuels.7b03779. | es_ES |