- -

Segmentation of indoor customer paths using intuitionistic fuzzy clustering: Process mining visualization

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Segmentation of indoor customer paths using intuitionistic fuzzy clustering: Process mining visualization

Show full item record

Dogan, O.; Oztaysi, B.; Fernández Llatas, C. (2020). Segmentation of indoor customer paths using intuitionistic fuzzy clustering: Process mining visualization. Journal of Intelligent & Fuzzy Systems. 38(1):675-684. https://doi.org/10.3233/JIFS-179440

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/168485

Files in this item

Item Metadata

Title: Segmentation of indoor customer paths using intuitionistic fuzzy clustering: Process mining visualization
Author: Dogan, Onur Oztaysi, Basar Fernández Llatas, Carlos
Issued date:
Abstract:
[EN] There are some studies and methods in the literature to understand customer needs and behaviors from the path. However, path analysis has a complex structure because the many customers can follow many different paths. ...[+]
Subjects: Fuzzy c-means clustering , Intuitionistic fuzzy sets , Process mining , Customer behaviors , Indoor locations
Copyrigths: Cerrado
Source:
Journal of Intelligent & Fuzzy Systems. (issn: 1064-1246 )
DOI: 10.3233/JIFS-179440
Publisher:
IOS Press
Publisher version: https://doi.org/10.3233/JIFS-179440
Conference name: 13th International FLINS Conference on Uncertainty Modeling in Knowledge Engineering and Decision Making
Conference place: Belfast, North Ireland
Conference date: Agosto 21-24,2018
Type: Artículo Comunicación en congreso

References

Dogan, O., Bayo-Monton, J.-L., Fernandez-Llatas, C., & Oztaysi, B. (2019). Analyzing of Gender Behaviors from Paths Using Process Mining: A Shopping Mall Application. Sensors, 19(3), 557. doi:10.3390/s19030557

Dogan, O., & Oztaysi, B. (2019). Genders prediction from indoor customer paths by Levenshtein-based fuzzy kNN. Expert Systems with Applications, 136, 42-49. doi:10.1016/j.eswa.2019.06.029

Dogan, O., & Öztaysi, B. (2018). In-store behavioral analytics technology selection using fuzzy decision making. Journal of Enterprise Information Management, 31(4), 612-630. doi:10.1108/jeim-02-2018-0035 [+]
Dogan, O., Bayo-Monton, J.-L., Fernandez-Llatas, C., & Oztaysi, B. (2019). Analyzing of Gender Behaviors from Paths Using Process Mining: A Shopping Mall Application. Sensors, 19(3), 557. doi:10.3390/s19030557

Dogan, O., & Oztaysi, B. (2019). Genders prediction from indoor customer paths by Levenshtein-based fuzzy kNN. Expert Systems with Applications, 136, 42-49. doi:10.1016/j.eswa.2019.06.029

Dogan, O., & Öztaysi, B. (2018). In-store behavioral analytics technology selection using fuzzy decision making. Journal of Enterprise Information Management, 31(4), 612-630. doi:10.1108/jeim-02-2018-0035

De Leoni, M., van der Aalst, W. M. P., & Dees, M. (2016). A general process mining framework for correlating, predicting and clustering dynamic behavior based on event logs. Information Systems, 56, 235-257. doi:10.1016/j.is.2015.07.003

Arroyo, R., Yebes, J. J., Bergasa, L. M., Daza, I. G., & Almazán, J. (2015). Expert video-surveillance system for real-time detection of suspicious behaviors in shopping malls. Expert Systems with Applications, 42(21), 7991-8005. doi:10.1016/j.eswa.2015.06.016

Yoshimura, Y., Sobolevsky, S., Ratti, C., Girardin, F., Carrascal, J. P., Blat, J., & Sinatra, R. (2014). An Analysis of Visitors’ Behavior in the Louvre Museum: A Study Using Bluetooth Data. Environment and Planning B: Planning and Design, 41(6), 1113-1131. doi:10.1068/b130047p

Hwang, I., & Jang, Y. J. (2017). Process Mining to Discover Shoppers’ Pathways at a Fashion Retail Store Using a WiFi-Base Indoor Positioning System. IEEE Transactions on Automation Science and Engineering, 14(4), 1786-1792. doi:10.1109/tase.2017.2692961

Abedi, N., Bhaskar, A., Chung, E., & Miska, M. (2015). Assessment of antenna characteristic effects on pedestrian and cyclists travel-time estimation based on Bluetooth and WiFi MAC addresses. Transportation Research Part C: Emerging Technologies, 60, 124-141. doi:10.1016/j.trc.2015.08.010

Mou, S., Robb, D. J., & DeHoratius, N. (2018). Retail store operations: Literature review and research directions. European Journal of Operational Research, 265(2), 399-422. doi:10.1016/j.ejor.2017.07.003

Fernandez-Llatas, C., Lizondo, A., Monton, E., Benedi, J.-M., & Traver, V. (2015). Process Mining Methodology for Health Process Tracking Using Real-Time Indoor Location Systems. Sensors, 15(12), 29821-29840. doi:10.3390/s151229769

W.M. van der Aalst , Process mining: Data science in action, Springer, 2016.

R.J.C. Bose and W.M. Van der Aalst , Context aware trace clustering: Towards improving process mining results, in: Proceedings of the 2009 SIAM International Conference on Data Mining, SIAM, 2009, pp. 401–412.

M. Song , C.W. Günther and W.M. Van der Aalst , Trace clustering in process mining, in: International Conference on Business Process Management, Springer, 2008, pp. 109–120.

D. Ferreira , M. Zacarias , M. Malheiros and P. Ferreira , Approaching process mining with sequence clustering: Experiments and findings, in: International Conference on Business Process Management, Springer, 2007, pp. 360–374.

O. Dogan , Heuristic Approaches in Clustering Problems, in: Handbook of Research on Applied Optimization Methodologies in Manufacturing Systems, IGI Global, 2018, pp. 107–124.

Kahraman, C., Öztayşi, B., Çevik Onar, S., & Doğan, O. (2018). INTUITIONISTIC FUZZY ORIGINATED TYPE-2 FUZZY AHP. International Journal of the Analytic Hierarchy Process, 10(2). doi:10.13033/ijahp.v10i2.538

Zhexue Huang, & Ng, M. K. (1999). A fuzzy k-modes algorithm for clustering categorical data. IEEE Transactions on Fuzzy Systems, 7(4), 446-452. doi:10.1109/91.784206

Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87-96. doi:10.1016/s0165-0114(86)80034-3

Rebuge, Á., & Ferreira, D. R. (2012). Business process analysis in healthcare environments: A methodology based on process mining. Information Systems, 37(2), 99-116. doi:10.1016/j.is.2011.01.003

Frisby, J., Smith, V., Traub, S., & Patel, V. L. (2017). Contextual Computing : A Bluetooth based approach for tracking healthcare providers in the emergency room. Journal of Biomedical Informatics, 65, 97-104. doi:10.1016/j.jbi.2016.11.008

Popa, M. C., Rothkrantz, L. J. M., Shan, C., Gritti, T., & Wiggers, P. (2013). Semantic assessment of shopping behavior using trajectories, shopping related actions, and context information. Pattern Recognition Letters, 34(7), 809-819. doi:10.1016/j.patrec.2012.04.015

M.L. van Eck , N. Sidorova and W.M. van der Aalst , Enabling process mining on sensor data from smart products, in: Research Challenges in Information Science (RCIS), 2016 IEEE Tenth International Conference on, IEEE, 2016, pp. 1–12.

Delafontaine, M., Versichele, M., Neutens, T., & Van de Weghe, N. (2012). Analysing spatiotemporal sequences in Bluetooth tracking data. Applied Geography, 34, 659-668. doi:10.1016/j.apgeog.2012.04.003

Wu, Y., Wang, H.-C., Chang, L.-C., & Chou, S.-C. (2015). Customer’s Flow Analysis in Physical Retail Store. Procedia Manufacturing, 3, 3506-3513. doi:10.1016/j.promfg.2015.07.672

Yim, J., Jeong, S., Gwon, K., & Joo, J. (2010). Improvement of Kalman filters for WLAN based indoor tracking. Expert Systems with Applications, 37(1), 426-433. doi:10.1016/j.eswa.2009.05.047

Oosterlinck, D., Benoit, D. F., Baecke, P., & Van de Weghe, N. (2017). Bluetooth tracking of humans in an indoor environment: An application to shopping mall visits. Applied Geography, 78, 55-65. doi:10.1016/j.apgeog.2016.11.005

S. Chen , A. Fern and S. Todorovic , Multi-object tracking via constrained sequential labeling, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 1130–1137.

Marchetti, Y., & Zhou, Q. (2014). Solution path clustering with adaptive concave penalty. Electronic Journal of Statistics, 8(1). doi:10.1214/14-ejs934

J. Evermann , T. Thaler and P. Fettke , Clustering traces using sequence alignment, in: International Conference on Business Process Management, Springer, 2016, pp. 179–190.

D’Urso, P., & Massari, R. (2013). Fuzzy clustering of human activity patterns. Fuzzy Sets and Systems, 215, 29-54. doi:10.1016/j.fss.2012.05.009

Jiang, S., Ferreira, J., & González, M. C. (2012). Clustering daily patterns of human activities in the city. Data Mining and Knowledge Discovery, 25(3), 478-510. doi:10.1007/s10618-012-0264-z

A. Manzi , P. Dario and F. Cavallo , A human activity recognition system based on dynamic clustering of skeleton data, Sensors 17(5) (2017), 1100.

Fernández-Llatas, C., Benedi, J.-M., García-Gómez, J., & Traver, V. (2013). Process Mining for Individualized Behavior Modeling Using Wireless Tracking in Nursing Homes. Sensors, 13(11), 15434-15451. doi:10.3390/s131115434

W.M. van der Aalst , How people really (like to) work, in: International Conference on Human-Centred Software Engineering, Springer, 2014, pp. 317–321.

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. doi:10.1016/s0019-9958(65)90241-x

Szmidt, E., & Kacprzyk, J. (2000). Distances between intuitionistic fuzzy sets. Fuzzy Sets and Systems, 114(3), 505-518. doi:10.1016/s0165-0114(98)00244-9

Xie, X. L., & Beni, G. (1991). A validity measure for fuzzy clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(8), 841-847. doi:10.1109/34.85677

Yager, R. R. (2004). On some new classes of implication operators and their role in approximate reasoning. Information Sciences, 167(1-4), 193-216. doi:10.1016/j.ins.2003.04.001

Dunn, J. C. (1973). A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters. Journal of Cybernetics, 3(3), 32-57. doi:10.1080/01969727308546046

J.C. Bezdek , Pattern Recognition with Fuzzy Objective Function Algorithms, Kluwer Academic Publishers, Norwell, MA, USA, 1981.

Chaira, T. (2011). A novel intuitionistic fuzzy C means clustering algorithm and its application to medical images. Applied Soft Computing, 11(2), 1711-1717. doi:10.1016/j.asoc.2010.05.005

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record