- -

Segmentation of indoor customer paths using intuitionistic fuzzy clustering: Process mining visualization

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Segmentation of indoor customer paths using intuitionistic fuzzy clustering: Process mining visualization

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Dogan, Onur es_ES
dc.contributor.author Oztaysi, Basar es_ES
dc.contributor.author Fernández Llatas, Carlos es_ES
dc.date.accessioned 2021-06-29T03:31:31Z
dc.date.available 2021-06-29T03:31:31Z
dc.date.issued 2020-01-09 es_ES
dc.identifier.issn 1064-1246 es_ES
dc.identifier.uri http://hdl.handle.net/10251/168485
dc.description.abstract [EN] There are some studies and methods in the literature to understand customer needs and behaviors from the path. However, path analysis has a complex structure because the many customers can follow many different paths. Therefore, clustering methods facilitate the analysis of the customer location data to evaluate customer behaviors. Therefore, we aim to understand customer behavior by clustering their paths. We use an intuitionistic fuzzy c-means clustering (IFCM) algorithm for two-dimensional indoor customer data; case durations and the number of visited locations. Customer location data was collected by Bluetooth-based technology devices from one of the major shopping malls in Istanbul. Firstly, we create customer paths from customer location data by using process mining that is a technique that can be used to increase the understandability of the IFCM results. Moreover, we show with this study that fuzzy methods and process mining technique can be used together to analyze customer paths and gives more understandable results. We also present behavioral changes of some customers who have a different visit by inspecting their clustered paths. es_ES
dc.language Inglés es_ES
dc.publisher IOS Press es_ES
dc.relation.ispartof Journal of Intelligent & Fuzzy Systems es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Fuzzy c-means clustering es_ES
dc.subject Intuitionistic fuzzy sets es_ES
dc.subject Process mining es_ES
dc.subject Customer behaviors es_ES
dc.subject Indoor locations es_ES
dc.title Segmentation of indoor customer paths using intuitionistic fuzzy clustering: Process mining visualization es_ES
dc.type Artículo es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.3233/JIFS-179440 es_ES
dc.rights.accessRights Cerrado es_ES
dc.description.bibliographicCitation Dogan, O.; Oztaysi, B.; Fernández Llatas, C. (2020). Segmentation of indoor customer paths using intuitionistic fuzzy clustering: Process mining visualization. Journal of Intelligent & Fuzzy Systems. 38(1):675-684. https://doi.org/10.3233/JIFS-179440 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename 13th International FLINS Conference on Uncertainty Modeling in Knowledge Engineering and Decision Making es_ES
dc.relation.conferencedate Agosto 21-24,2018 es_ES
dc.relation.conferenceplace Belfast, North Ireland es_ES
dc.relation.publisherversion https://doi.org/10.3233/JIFS-179440 es_ES
dc.description.upvformatpinicio 675 es_ES
dc.description.upvformatpfin 684 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 38 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\403336 es_ES
dc.description.references Dogan, O., Bayo-Monton, J.-L., Fernandez-Llatas, C., & Oztaysi, B. (2019). Analyzing of Gender Behaviors from Paths Using Process Mining: A Shopping Mall Application. Sensors, 19(3), 557. doi:10.3390/s19030557 es_ES
dc.description.references Dogan, O., & Oztaysi, B. (2019). Genders prediction from indoor customer paths by Levenshtein-based fuzzy kNN. Expert Systems with Applications, 136, 42-49. doi:10.1016/j.eswa.2019.06.029 es_ES
dc.description.references Dogan, O., & Öztaysi, B. (2018). In-store behavioral analytics technology selection using fuzzy decision making. Journal of Enterprise Information Management, 31(4), 612-630. doi:10.1108/jeim-02-2018-0035 es_ES
dc.description.references De Leoni, M., van der Aalst, W. M. P., & Dees, M. (2016). A general process mining framework for correlating, predicting and clustering dynamic behavior based on event logs. Information Systems, 56, 235-257. doi:10.1016/j.is.2015.07.003 es_ES
dc.description.references Arroyo, R., Yebes, J. J., Bergasa, L. M., Daza, I. G., & Almazán, J. (2015). Expert video-surveillance system for real-time detection of suspicious behaviors in shopping malls. Expert Systems with Applications, 42(21), 7991-8005. doi:10.1016/j.eswa.2015.06.016 es_ES
dc.description.references Yoshimura, Y., Sobolevsky, S., Ratti, C., Girardin, F., Carrascal, J. P., Blat, J., & Sinatra, R. (2014). An Analysis of Visitors’ Behavior in the Louvre Museum: A Study Using Bluetooth Data. Environment and Planning B: Planning and Design, 41(6), 1113-1131. doi:10.1068/b130047p es_ES
dc.description.references Hwang, I., & Jang, Y. J. (2017). Process Mining to Discover Shoppers’ Pathways at a Fashion Retail Store Using a WiFi-Base Indoor Positioning System. IEEE Transactions on Automation Science and Engineering, 14(4), 1786-1792. doi:10.1109/tase.2017.2692961 es_ES
dc.description.references Abedi, N., Bhaskar, A., Chung, E., & Miska, M. (2015). Assessment of antenna characteristic effects on pedestrian and cyclists travel-time estimation based on Bluetooth and WiFi MAC addresses. Transportation Research Part C: Emerging Technologies, 60, 124-141. doi:10.1016/j.trc.2015.08.010 es_ES
dc.description.references Mou, S., Robb, D. J., & DeHoratius, N. (2018). Retail store operations: Literature review and research directions. European Journal of Operational Research, 265(2), 399-422. doi:10.1016/j.ejor.2017.07.003 es_ES
dc.description.references Fernandez-Llatas, C., Lizondo, A., Monton, E., Benedi, J.-M., & Traver, V. (2015). Process Mining Methodology for Health Process Tracking Using Real-Time Indoor Location Systems. Sensors, 15(12), 29821-29840. doi:10.3390/s151229769 es_ES
dc.description.references W.M. van der Aalst , Process mining: Data science in action, Springer, 2016. es_ES
dc.description.references R.J.C. Bose and W.M. Van der Aalst , Context aware trace clustering: Towards improving process mining results, in: Proceedings of the 2009 SIAM International Conference on Data Mining, SIAM, 2009, pp. 401–412. es_ES
dc.description.references M. Song , C.W. Günther and W.M. Van der Aalst , Trace clustering in process mining, in: International Conference on Business Process Management, Springer, 2008, pp. 109–120. es_ES
dc.description.references D. Ferreira , M. Zacarias , M. Malheiros and P. Ferreira , Approaching process mining with sequence clustering: Experiments and findings, in: International Conference on Business Process Management, Springer, 2007, pp. 360–374. es_ES
dc.description.references O. Dogan , Heuristic Approaches in Clustering Problems, in: Handbook of Research on Applied Optimization Methodologies in Manufacturing Systems, IGI Global, 2018, pp. 107–124. es_ES
dc.description.references Kahraman, C., Öztayşi, B., Çevik Onar, S., & Doğan, O. (2018). INTUITIONISTIC FUZZY ORIGINATED TYPE-2 FUZZY AHP. International Journal of the Analytic Hierarchy Process, 10(2). doi:10.13033/ijahp.v10i2.538 es_ES
dc.description.references Zhexue Huang, & Ng, M. K. (1999). A fuzzy k-modes algorithm for clustering categorical data. IEEE Transactions on Fuzzy Systems, 7(4), 446-452. doi:10.1109/91.784206 es_ES
dc.description.references Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87-96. doi:10.1016/s0165-0114(86)80034-3 es_ES
dc.description.references Rebuge, Á., & Ferreira, D. R. (2012). Business process analysis in healthcare environments: A methodology based on process mining. Information Systems, 37(2), 99-116. doi:10.1016/j.is.2011.01.003 es_ES
dc.description.references Frisby, J., Smith, V., Traub, S., & Patel, V. L. (2017). Contextual Computing : A Bluetooth based approach for tracking healthcare providers in the emergency room. Journal of Biomedical Informatics, 65, 97-104. doi:10.1016/j.jbi.2016.11.008 es_ES
dc.description.references Popa, M. C., Rothkrantz, L. J. M., Shan, C., Gritti, T., & Wiggers, P. (2013). Semantic assessment of shopping behavior using trajectories, shopping related actions, and context information. Pattern Recognition Letters, 34(7), 809-819. doi:10.1016/j.patrec.2012.04.015 es_ES
dc.description.references M.L. van Eck , N. Sidorova and W.M. van der Aalst , Enabling process mining on sensor data from smart products, in: Research Challenges in Information Science (RCIS), 2016 IEEE Tenth International Conference on, IEEE, 2016, pp. 1–12. es_ES
dc.description.references Delafontaine, M., Versichele, M., Neutens, T., & Van de Weghe, N. (2012). Analysing spatiotemporal sequences in Bluetooth tracking data. Applied Geography, 34, 659-668. doi:10.1016/j.apgeog.2012.04.003 es_ES
dc.description.references Wu, Y., Wang, H.-C., Chang, L.-C., & Chou, S.-C. (2015). Customer’s Flow Analysis in Physical Retail Store. Procedia Manufacturing, 3, 3506-3513. doi:10.1016/j.promfg.2015.07.672 es_ES
dc.description.references Yim, J., Jeong, S., Gwon, K., & Joo, J. (2010). Improvement of Kalman filters for WLAN based indoor tracking. Expert Systems with Applications, 37(1), 426-433. doi:10.1016/j.eswa.2009.05.047 es_ES
dc.description.references Oosterlinck, D., Benoit, D. F., Baecke, P., & Van de Weghe, N. (2017). Bluetooth tracking of humans in an indoor environment: An application to shopping mall visits. Applied Geography, 78, 55-65. doi:10.1016/j.apgeog.2016.11.005 es_ES
dc.description.references S. Chen , A. Fern and S. Todorovic , Multi-object tracking via constrained sequential labeling, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 1130–1137. es_ES
dc.description.references Marchetti, Y., & Zhou, Q. (2014). Solution path clustering with adaptive concave penalty. Electronic Journal of Statistics, 8(1). doi:10.1214/14-ejs934 es_ES
dc.description.references J. Evermann , T. Thaler and P. Fettke , Clustering traces using sequence alignment, in: International Conference on Business Process Management, Springer, 2016, pp. 179–190. es_ES
dc.description.references D’Urso, P., & Massari, R. (2013). Fuzzy clustering of human activity patterns. Fuzzy Sets and Systems, 215, 29-54. doi:10.1016/j.fss.2012.05.009 es_ES
dc.description.references Jiang, S., Ferreira, J., & González, M. C. (2012). Clustering daily patterns of human activities in the city. Data Mining and Knowledge Discovery, 25(3), 478-510. doi:10.1007/s10618-012-0264-z es_ES
dc.description.references A. Manzi , P. Dario and F. Cavallo , A human activity recognition system based on dynamic clustering of skeleton data, Sensors 17(5) (2017), 1100. es_ES
dc.description.references Fernández-Llatas, C., Benedi, J.-M., García-Gómez, J., & Traver, V. (2013). Process Mining for Individualized Behavior Modeling Using Wireless Tracking in Nursing Homes. Sensors, 13(11), 15434-15451. doi:10.3390/s131115434 es_ES
dc.description.references W.M. van der Aalst , How people really (like to) work, in: International Conference on Human-Centred Software Engineering, Springer, 2014, pp. 317–321. es_ES
dc.description.references Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. doi:10.1016/s0019-9958(65)90241-x es_ES
dc.description.references Szmidt, E., & Kacprzyk, J. (2000). Distances between intuitionistic fuzzy sets. Fuzzy Sets and Systems, 114(3), 505-518. doi:10.1016/s0165-0114(98)00244-9 es_ES
dc.description.references Xie, X. L., & Beni, G. (1991). A validity measure for fuzzy clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(8), 841-847. doi:10.1109/34.85677 es_ES
dc.description.references Yager, R. R. (2004). On some new classes of implication operators and their role in approximate reasoning. Information Sciences, 167(1-4), 193-216. doi:10.1016/j.ins.2003.04.001 es_ES
dc.description.references Dunn, J. C. (1973). A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters. Journal of Cybernetics, 3(3), 32-57. doi:10.1080/01969727308546046 es_ES
dc.description.references J.C. Bezdek , Pattern Recognition with Fuzzy Objective Function Algorithms, Kluwer Academic Publishers, Norwell, MA, USA, 1981. es_ES
dc.description.references Chaira, T. (2011). A novel intuitionistic fuzzy C means clustering algorithm and its application to medical images. Applied Soft Computing, 11(2), 1711-1717. doi:10.1016/j.asoc.2010.05.005 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem