- -

Simulation Study for Designing a Dedicated Cardiac TOF-PET System

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Simulation Study for Designing a Dedicated Cardiac TOF-PET System

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Oliver-Gil, Sandra es_ES
dc.contributor.author Moliner, L. es_ES
dc.contributor.author Ilisie, V. es_ES
dc.contributor.author Benlloch Baviera, Jose María es_ES
dc.contributor.author Rodríguez-Álvarez, M.J. es_ES
dc.date.accessioned 2021-06-29T03:31:32Z
dc.date.available 2021-06-29T03:31:32Z
dc.date.issued 2020-03 es_ES
dc.identifier.uri http://hdl.handle.net/10251/168486
dc.description.abstract [EN] The development of dedicated positron emission tomography scanners is an active area of research, especially aiming at the improvement of lesion detection and in support of cancer treatment and management. Recently, dedicated Positron Emission Tomography (PET) systems with different configurations for specific organs have been developed for improving detection effectiveness. Open geometries are always subject to distortion and artifacts in the reconstructed images. Therefore, the aim of this work is to determine the optimal geometry for a novel cardiac PET system that will be developed by our team, and determine the time resolution needed to achieve reasonable image quality for the chosen geometry. The proposed geometries consist of 36 modules. These modules are arranged in two sets of two plates, each one with different configurations. We performed Monte Carlo simulations with different TOF resolutions, in order to test the image quality improvement in each case. Our results show, as expected, that increasing TOF resolution reduces distortion and artifact effects. We can conclude that a TOF resolution of the order of 200 ps is needed to reduce the artifacts, to acceptable levels, generated in the simulated cardiac-PET open geometries. es_ES
dc.description.sponsorship This project has been co-financed by the Spanish Government Grants TEC2016-79884-C2 and RTC-2016-5186-1, by the European Union through the European Regional Development Fund (ERDF) and by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (Grant Agreement No. 695536). The work of V.I. was supported by the Generalitat Valenciana APOSTD/2019/086 fellowship. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Positron Emission Tomography (PET) es_ES
dc.subject PET imaging es_ES
dc.subject Dedicated cardiac system es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Simulation Study for Designing a Dedicated Cardiac TOF-PET System es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s20051311 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/695536/EU/Innovative PET scanner for dynamic imaging/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//APOSTD%2F2019%2F086/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2016-79884-C2-2-R/ES/DESARROLLO DEL SOFTWARE PARA SISTEMA DE DIAGNOSTICO POR IMAGEN MOLECULAR PARA CORAZON EN CONDICIONES DE STRESS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RTC-2016-5186-1/ES/Control objetivo del deterioro cognitivo mediante análisis de imagen de amiloide/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Oliver-Gil, S.; Moliner, L.; Ilisie, V.; Benlloch Baviera, JM.; Rodríguez-Álvarez, M. (2020). Simulation Study for Designing a Dedicated Cardiac TOF-PET System. Sensors. 20(5):1-16. https://doi.org/10.3390/s20051311 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/s20051311 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20 es_ES
dc.description.issue 5 es_ES
dc.identifier.eissn 1424-8220 es_ES
dc.identifier.pmid 32121227 es_ES
dc.identifier.pmcid PMC7085583 es_ES
dc.relation.pasarela S\404525 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Gaemperli, O., & Kaufmann, P. A. (2011). PET and PET/CT in cardiovascular disease. Annals of the New York Academy of Sciences, 1228(1), 109-136. doi:10.1111/j.1749-6632.2011.06030.x es_ES
dc.description.references Thackeray, J. T., & Bengel, F. M. (2018). Molecular Imaging of Myocardial Inflammation With Positron Emission Tomography Post-Ischemia. JACC: Cardiovascular Imaging, 11(9), 1340-1355. doi:10.1016/j.jcmg.2018.05.026 es_ES
dc.description.references Li, Z., Gupte, A. A., Zhang, A., & Hamilton, D. J. (2017). Pet Imaging and its Application in Cardiovascular Diseases. Methodist DeBakey Cardiovascular Journal, 13(1), 29. doi:10.14797/mdcj-13-1-29 es_ES
dc.description.references Juárez-Orozco, L. E., Tio, R. A., Alexanderson, E., Dweck, M., Vliegenthart, R., El Moumni, M., … Slart, R. H. J. A. (2017). Quantitative myocardial perfusion evaluation with positron emission tomography and the risk of cardiovascular events in patients with coronary artery disease: a systematic review of prognostic studies. European Heart Journal - Cardiovascular Imaging, 19(10), 1179-1187. doi:10.1093/ehjci/jex331 es_ES
dc.description.references Schelbert, H. R. (2009). Quantification of Myocardial Blood Flow: What is the Clinical Role? Cardiology Clinics, 27(2), 277-289. doi:10.1016/j.ccl.2008.12.009 es_ES
dc.description.references Knuuti, J., Kajander, S., Mäki, M., & Ukkonen, H. (2009). Quantification of myocardial blood flow will reform the detection of CAD. Journal of Nuclear Cardiology, 16(4), 497-506. doi:10.1007/s12350-009-9101-1 es_ES
dc.description.references Peng, H. (2015). Design study of a cardiac-dedicated PET system. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 779, 39-46. doi:10.1016/j.nima.2015.01.042 es_ES
dc.description.references Gonzalez, A. J., Sanchez, F., & Benlloch, J. M. (2018). Organ-Dedicated Molecular Imaging Systems. IEEE Transactions on Radiation and Plasma Medical Sciences, 2(5), 388-403. doi:10.1109/trpms.2018.2846745 es_ES
dc.description.references Moliner, L., Rodríguez-Alvarez, M. J., Catret, J. V., González, A., Ilisie, V., & Benlloch, J. M. (2019). NEMA Performance Evaluation of CareMiBrain dedicated brain PET and Comparison with the whole-body and dedicated brain PET systems. Scientific Reports, 9(1). doi:10.1038/s41598-019-51898-z es_ES
dc.description.references Ahmed, A. M., Tashima, H., Yoshida, E., Nishikido, F., & Yamaya, T. (2017). Simulation study comparing the helmet-chin PET with a cylindrical PET of the same number of detectors. Physics in Medicine and Biology, 62(11), 4541-4550. doi:10.1088/1361-6560/aa685c es_ES
dc.description.references Cho, Z.-H., Son, Y.-D., Kim, H.-K., Kwon, D.-H., Joo, Y.-H., Ra, J. B., … Kim, Y.-B. (2019). Development of Positron Emission Tomography With Wobbling and Zooming for High Sensitivity and High-Resolution Molecular Imaging. IEEE Transactions on Medical Imaging, 38(12), 2875-2882. doi:10.1109/tmi.2019.2916326 es_ES
dc.description.references Surti, S., & Karp, J. S. (2008). Design considerations for a limited angle, dedicated breast, TOF PET scanner. Physics in Medicine and Biology, 53(11), 2911-2921. doi:10.1088/0031-9155/53/11/010 es_ES
dc.description.references Surti, S., & Karp, J. S. (2016). Advances in time-of-flight PET. Physica Medica, 32(1), 12-22. doi:10.1016/j.ejmp.2015.12.007 es_ES
dc.description.references Grant, A. M., Deller, T. W., Khalighi, M. M., Maramraju, S. H., Delso, G., & Levin, C. S. (2016). NEMA NU 2-2012 performance studies for the SiPM-based ToF-PET component of the GE SIGNA PET/MR system. Medical Physics, 43(5), 2334-2343. doi:10.1118/1.4945416 es_ES
dc.description.references Van Sluis, J., de Jong, J., Schaar, J., Noordzij, W., van Snick, P., Dierckx, R., … Boellaard, R. (2019). Performance Characteristics of the Digital Biograph Vision PET/CT System. Journal of Nuclear Medicine, 60(7), 1031-1036. doi:10.2967/jnumed.118.215418 es_ES
dc.description.references Ito, M., Lee, M. S., & Lee, J. S. (2013). Continuous depth-of-interaction measurement in a single-layer pixelated crystal array using a single-ended readout. Physics in Medicine and Biology, 58(5), 1269-1282. doi:10.1088/0031-9155/58/5/1269 es_ES
dc.description.references Bugalho, R., Di Francesco, A., Ferramacho, L., Leong, C., Niknejad, T., Oliveira, L., … Varela, J. (2018). Experimental results with TOFPET2 ASIC for time-of-flight applications. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 912, 195-198. doi:10.1016/j.nima.2017.11.034 es_ES
dc.description.references Gundacker, S., Auffray, E., Frisch, B., Jarron, P., Knapitsch, A., Meyer, T., … Lecoq, P. (2013). Time of flight positron emission tomography towards 100ps resolution with L(Y)SO: an experimental and theoretical analysis. Journal of Instrumentation, 8(07), P07014-P07014. doi:10.1088/1748-0221/8/07/p07014 es_ES
dc.description.references A Code System for Monte Carlo Simulation of Electron and Photon Transporthttp://www.oecd-nea.org/lists/penelope.html es_ES
dc.description.references Strydhorst, J., & Buvat, I. (2016). Redesign of the GATE PET coincidence sorter. Physics in Medicine and Biology, 61(18), N522-N531. doi:10.1088/0031-9155/61/18/n522 es_ES
dc.description.references Baró, J., Sempau, J., Fernández-Varea, J. M., & Salvat, F. (1995). PENELOPE: An algorithm for Monte Carlo simulation of the penetration and energy loss of electrons and positrons in matter. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 100(1), 31-46. doi:10.1016/0168-583x(95)00349-5 es_ES
dc.description.references Sempau, J., Acosta, E., Baro, J., Fernández-Varea, J. M., & Salvat, F. (1997). An algorithm for Monte Carlo simulation of coupled electron-photon transport. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 132(3), 377-390. doi:10.1016/s0168-583x(97)00414-x es_ES
dc.description.references Sempau, J., Fernández-Varea, J. M., Acosta, E., & Salvat, F. (2003). Experimental benchmarks of the Monte Carlo code penelope. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 207(2), 107-123. doi:10.1016/s0168-583x(03)00453-1 es_ES
dc.description.references Reader, A. J., Ally, S., Bakatselos, F., Manavaki, R., Walledge, R. J., Jeavons, A. P., … Zweit, J. (2002). One-pass list-mode EM algorithm for high-resolution 3-D PET image reconstruction into large arrays. IEEE Transactions on Nuclear Science, 49(3), 693-699. doi:10.1109/tns.2002.1039550 es_ES
dc.description.references Spanoudaki, V. C., & Levin, C. S. (2010). Photo-Detectors for Time of Flight Positron Emission Tomography (ToF-PET). Sensors, 10(11), 10484-10505. doi:10.3390/s101110484 es_ES
dc.description.references Siddon, R. L. (1985). Fast calculation of the exact radiological path for a three-dimensional CT array. Medical Physics, 12(2), 252-255. doi:10.1118/1.595715 es_ES
dc.description.references Vandenberghe, S., Daube-Witherspoon, M. E., Lewitt, R. M., & Karp, J. S. (2006). Fast reconstruction of 3D time-of-flight PET data by axial rebinning and transverse mashing. Physics in Medicine and Biology, 51(6), 1603-1621. doi:10.1088/0031-9155/51/6/017 es_ES
dc.description.references Performance Measurements of Positron Emission Tomographshttps://www.nema.org/Standards/ComplimentaryDocuments/Contents%20and%20Scope%20NEMA%20NU%202%202012.pdf es_ES
dc.description.references Yu, W., & Zeng, L. (2014). A Novel Weighted Total Difference Based Image Reconstruction Algorithm for Few-View Computed Tomography. PLoS ONE, 9(10), e109345. doi:10.1371/journal.pone.0109345 es_ES
dc.description.references Tashima, H., Yamaya, T., Yoshida, E., Kinouchi, S., Watanabe, M., & Tanaka, E. (2012). A single-ring OpenPET enabling PET imaging during radiotherapy. Physics in Medicine and Biology, 57(14), 4705-4718. doi:10.1088/0031-9155/57/14/4705 es_ES
dc.description.references Yamaya, T., Inaniwa, T., Minohara, S., Yoshida, E., Inadama, N., Nishikido, F., … Murayama, H. (2008). A proposal of an open PET geometry. Physics in Medicine and Biology, 53(3), 757-773. doi:10.1088/0031-9155/53/3/015 es_ES
dc.description.references Miyake, K. K., Matsumoto, K., Inoue, M., Nakamoto, Y., Kanao, S., Oishi, T., … Togashi, K. (2014). Performance Evaluation of a New Dedicated Breast PET Scanner Using NEMA NU4-2008 Standards. Journal of Nuclear Medicine, 55(7), 1198-1203. doi:10.2967/jnumed.113.131565 es_ES
dc.description.references Yamamoto, S., Honda, M., Oohashi, T., Shimizu, K., & Senda, M. (2011). Development of a Brain PET System, PET-Hat: A Wearable PET System for Brain Research. IEEE Transactions on Nuclear Science, 58(3), 668-673. doi:10.1109/tns.2011.2105502 es_ES
dc.description.references Garibaldi, F., Capuani, S., Colilli, S., Cosentino, L., Cusanno, F., Leo, R. D., … Tamma, C. (2013). TOPEM: A PET-TOF endorectal probe, compatible with MRI for diagnosis and follow up of prostate cancer. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 702, 13-15. doi:10.1016/j.nima.2012.09.020 es_ES
dc.description.references González-Montoro, A., Sánchez, F., Martí, R., Hernández, L., Aguilar, A., Barberá, J., … González, A. J. (2018). Detector block performance based on a monolithic LYSO crystal using a novel signal multiplexing method. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 912, 372-377. doi:10.1016/j.nima.2017.10.098 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem