- -

Simulation Study for Designing a Dedicated Cardiac TOF-PET System

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Simulation Study for Designing a Dedicated Cardiac TOF-PET System

Mostrar el registro completo del ítem

Oliver-Gil, S.; Moliner, L.; Ilisie, V.; Benlloch Baviera, JM.; Rodríguez-Álvarez, M. (2020). Simulation Study for Designing a Dedicated Cardiac TOF-PET System. Sensors. 20(5):1-16. https://doi.org/10.3390/s20051311

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/168486

Ficheros en el ítem

Metadatos del ítem

Título: Simulation Study for Designing a Dedicated Cardiac TOF-PET System
Autor: Oliver-Gil, Sandra Moliner, L. Ilisie, V. Benlloch Baviera, Jose María Rodríguez-Álvarez, M.J.
Entidad UPV: Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] The development of dedicated positron emission tomography scanners is an active area of research, especially aiming at the improvement of lesion detection and in support of cancer treatment and management. Recently, ...[+]
Palabras clave: Positron Emission Tomography (PET) , PET imaging , Dedicated cardiac system
Derechos de uso: Reconocimiento (by)
Fuente:
Sensors. (eissn: 1424-8220 )
DOI: 10.3390/s20051311
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/s20051311
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/695536/EU/Innovative PET scanner for dynamic imaging/
info:eu-repo/grantAgreement/GVA//APOSTD%2F2019%2F086/
info:eu-repo/grantAgreement/MINECO//TEC2016-79884-C2-2-R/ES/DESARROLLO DEL SOFTWARE PARA SISTEMA DE DIAGNOSTICO POR IMAGEN MOLECULAR PARA CORAZON EN CONDICIONES DE STRESS/
info:eu-repo/grantAgreement/MINECO//RTC-2016-5186-1/ES/Control objetivo del deterioro cognitivo mediante análisis de imagen de amiloide/
Agradecimientos:
This project has been co-financed by the Spanish Government Grants TEC2016-79884-C2 and RTC-2016-5186-1, by the European Union through the European Regional Development Fund (ERDF) and by the European Research Council (ERC) ...[+]
Tipo: Artículo

References

Gaemperli, O., & Kaufmann, P. A. (2011). PET and PET/CT in cardiovascular disease. Annals of the New York Academy of Sciences, 1228(1), 109-136. doi:10.1111/j.1749-6632.2011.06030.x

Thackeray, J. T., & Bengel, F. M. (2018). Molecular Imaging of Myocardial Inflammation With Positron Emission Tomography Post-Ischemia. JACC: Cardiovascular Imaging, 11(9), 1340-1355. doi:10.1016/j.jcmg.2018.05.026

Li, Z., Gupte, A. A., Zhang, A., & Hamilton, D. J. (2017). Pet Imaging and its Application in Cardiovascular Diseases. Methodist DeBakey Cardiovascular Journal, 13(1), 29. doi:10.14797/mdcj-13-1-29 [+]
Gaemperli, O., & Kaufmann, P. A. (2011). PET and PET/CT in cardiovascular disease. Annals of the New York Academy of Sciences, 1228(1), 109-136. doi:10.1111/j.1749-6632.2011.06030.x

Thackeray, J. T., & Bengel, F. M. (2018). Molecular Imaging of Myocardial Inflammation With Positron Emission Tomography Post-Ischemia. JACC: Cardiovascular Imaging, 11(9), 1340-1355. doi:10.1016/j.jcmg.2018.05.026

Li, Z., Gupte, A. A., Zhang, A., & Hamilton, D. J. (2017). Pet Imaging and its Application in Cardiovascular Diseases. Methodist DeBakey Cardiovascular Journal, 13(1), 29. doi:10.14797/mdcj-13-1-29

Juárez-Orozco, L. E., Tio, R. A., Alexanderson, E., Dweck, M., Vliegenthart, R., El Moumni, M., … Slart, R. H. J. A. (2017). Quantitative myocardial perfusion evaluation with positron emission tomography and the risk of cardiovascular events in patients with coronary artery disease: a systematic review of prognostic studies. European Heart Journal - Cardiovascular Imaging, 19(10), 1179-1187. doi:10.1093/ehjci/jex331

Schelbert, H. R. (2009). Quantification of Myocardial Blood Flow: What is the Clinical Role? Cardiology Clinics, 27(2), 277-289. doi:10.1016/j.ccl.2008.12.009

Knuuti, J., Kajander, S., Mäki, M., & Ukkonen, H. (2009). Quantification of myocardial blood flow will reform the detection of CAD. Journal of Nuclear Cardiology, 16(4), 497-506. doi:10.1007/s12350-009-9101-1

Peng, H. (2015). Design study of a cardiac-dedicated PET system. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 779, 39-46. doi:10.1016/j.nima.2015.01.042

Gonzalez, A. J., Sanchez, F., & Benlloch, J. M. (2018). Organ-Dedicated Molecular Imaging Systems. IEEE Transactions on Radiation and Plasma Medical Sciences, 2(5), 388-403. doi:10.1109/trpms.2018.2846745

Moliner, L., Rodríguez-Alvarez, M. J., Catret, J. V., González, A., Ilisie, V., & Benlloch, J. M. (2019). NEMA Performance Evaluation of CareMiBrain dedicated brain PET and Comparison with the whole-body and dedicated brain PET systems. Scientific Reports, 9(1). doi:10.1038/s41598-019-51898-z

Ahmed, A. M., Tashima, H., Yoshida, E., Nishikido, F., & Yamaya, T. (2017). Simulation study comparing the helmet-chin PET with a cylindrical PET of the same number of detectors. Physics in Medicine and Biology, 62(11), 4541-4550. doi:10.1088/1361-6560/aa685c

Cho, Z.-H., Son, Y.-D., Kim, H.-K., Kwon, D.-H., Joo, Y.-H., Ra, J. B., … Kim, Y.-B. (2019). Development of Positron Emission Tomography With Wobbling and Zooming for High Sensitivity and High-Resolution Molecular Imaging. IEEE Transactions on Medical Imaging, 38(12), 2875-2882. doi:10.1109/tmi.2019.2916326

Surti, S., & Karp, J. S. (2008). Design considerations for a limited angle, dedicated breast, TOF PET scanner. Physics in Medicine and Biology, 53(11), 2911-2921. doi:10.1088/0031-9155/53/11/010

Surti, S., & Karp, J. S. (2016). Advances in time-of-flight PET. Physica Medica, 32(1), 12-22. doi:10.1016/j.ejmp.2015.12.007

Grant, A. M., Deller, T. W., Khalighi, M. M., Maramraju, S. H., Delso, G., & Levin, C. S. (2016). NEMA NU 2-2012 performance studies for the SiPM-based ToF-PET component of the GE SIGNA PET/MR system. Medical Physics, 43(5), 2334-2343. doi:10.1118/1.4945416

Van Sluis, J., de Jong, J., Schaar, J., Noordzij, W., van Snick, P., Dierckx, R., … Boellaard, R. (2019). Performance Characteristics of the Digital Biograph Vision PET/CT System. Journal of Nuclear Medicine, 60(7), 1031-1036. doi:10.2967/jnumed.118.215418

Ito, M., Lee, M. S., & Lee, J. S. (2013). Continuous depth-of-interaction measurement in a single-layer pixelated crystal array using a single-ended readout. Physics in Medicine and Biology, 58(5), 1269-1282. doi:10.1088/0031-9155/58/5/1269

Bugalho, R., Di Francesco, A., Ferramacho, L., Leong, C., Niknejad, T., Oliveira, L., … Varela, J. (2018). Experimental results with TOFPET2 ASIC for time-of-flight applications. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 912, 195-198. doi:10.1016/j.nima.2017.11.034

Gundacker, S., Auffray, E., Frisch, B., Jarron, P., Knapitsch, A., Meyer, T., … Lecoq, P. (2013). Time of flight positron emission tomography towards 100ps resolution with L(Y)SO: an experimental and theoretical analysis. Journal of Instrumentation, 8(07), P07014-P07014. doi:10.1088/1748-0221/8/07/p07014

A Code System for Monte Carlo Simulation of Electron and Photon Transporthttp://www.oecd-nea.org/lists/penelope.html

Strydhorst, J., & Buvat, I. (2016). Redesign of the GATE PET coincidence sorter. Physics in Medicine and Biology, 61(18), N522-N531. doi:10.1088/0031-9155/61/18/n522

Baró, J., Sempau, J., Fernández-Varea, J. M., & Salvat, F. (1995). PENELOPE: An algorithm for Monte Carlo simulation of the penetration and energy loss of electrons and positrons in matter. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 100(1), 31-46. doi:10.1016/0168-583x(95)00349-5

Sempau, J., Acosta, E., Baro, J., Fernández-Varea, J. M., & Salvat, F. (1997). An algorithm for Monte Carlo simulation of coupled electron-photon transport. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 132(3), 377-390. doi:10.1016/s0168-583x(97)00414-x

Sempau, J., Fernández-Varea, J. M., Acosta, E., & Salvat, F. (2003). Experimental benchmarks of the Monte Carlo code penelope. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 207(2), 107-123. doi:10.1016/s0168-583x(03)00453-1

Reader, A. J., Ally, S., Bakatselos, F., Manavaki, R., Walledge, R. J., Jeavons, A. P., … Zweit, J. (2002). One-pass list-mode EM algorithm for high-resolution 3-D PET image reconstruction into large arrays. IEEE Transactions on Nuclear Science, 49(3), 693-699. doi:10.1109/tns.2002.1039550

Spanoudaki, V. C., & Levin, C. S. (2010). Photo-Detectors for Time of Flight Positron Emission Tomography (ToF-PET). Sensors, 10(11), 10484-10505. doi:10.3390/s101110484

Siddon, R. L. (1985). Fast calculation of the exact radiological path for a three-dimensional CT array. Medical Physics, 12(2), 252-255. doi:10.1118/1.595715

Vandenberghe, S., Daube-Witherspoon, M. E., Lewitt, R. M., & Karp, J. S. (2006). Fast reconstruction of 3D time-of-flight PET data by axial rebinning and transverse mashing. Physics in Medicine and Biology, 51(6), 1603-1621. doi:10.1088/0031-9155/51/6/017

Performance Measurements of Positron Emission Tomographshttps://www.nema.org/Standards/ComplimentaryDocuments/Contents%20and%20Scope%20NEMA%20NU%202%202012.pdf

Yu, W., & Zeng, L. (2014). A Novel Weighted Total Difference Based Image Reconstruction Algorithm for Few-View Computed Tomography. PLoS ONE, 9(10), e109345. doi:10.1371/journal.pone.0109345

Tashima, H., Yamaya, T., Yoshida, E., Kinouchi, S., Watanabe, M., & Tanaka, E. (2012). A single-ring OpenPET enabling PET imaging during radiotherapy. Physics in Medicine and Biology, 57(14), 4705-4718. doi:10.1088/0031-9155/57/14/4705

Yamaya, T., Inaniwa, T., Minohara, S., Yoshida, E., Inadama, N., Nishikido, F., … Murayama, H. (2008). A proposal of an open PET geometry. Physics in Medicine and Biology, 53(3), 757-773. doi:10.1088/0031-9155/53/3/015

Miyake, K. K., Matsumoto, K., Inoue, M., Nakamoto, Y., Kanao, S., Oishi, T., … Togashi, K. (2014). Performance Evaluation of a New Dedicated Breast PET Scanner Using NEMA NU4-2008 Standards. Journal of Nuclear Medicine, 55(7), 1198-1203. doi:10.2967/jnumed.113.131565

Yamamoto, S., Honda, M., Oohashi, T., Shimizu, K., & Senda, M. (2011). Development of a Brain PET System, PET-Hat: A Wearable PET System for Brain Research. IEEE Transactions on Nuclear Science, 58(3), 668-673. doi:10.1109/tns.2011.2105502

Garibaldi, F., Capuani, S., Colilli, S., Cosentino, L., Cusanno, F., Leo, R. D., … Tamma, C. (2013). TOPEM: A PET-TOF endorectal probe, compatible with MRI for diagnosis and follow up of prostate cancer. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 702, 13-15. doi:10.1016/j.nima.2012.09.020

González-Montoro, A., Sánchez, F., Martí, R., Hernández, L., Aguilar, A., Barberá, J., … González, A. J. (2018). Detector block performance based on a monolithic LYSO crystal using a novel signal multiplexing method. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 912, 372-377. doi:10.1016/j.nima.2017.10.098

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem