- -

Experimental study of influence of Liquefied Petroleum Gas addition in Hydrotreated Vegetable Oil fuel on ignition delay, flame lift off length and soot emission under diesel-like conditions

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Experimental study of influence of Liquefied Petroleum Gas addition in Hydrotreated Vegetable Oil fuel on ignition delay, flame lift off length and soot emission under diesel-like conditions

Show simple item record

Files in this item

dc.contributor.author Pastor, José V. es_ES
dc.contributor.author García Martínez, Antonio es_ES
dc.contributor.author Mico Reche, Carlos es_ES
dc.contributor.author Garcia-Carrero, Alba Andreina es_ES
dc.date.accessioned 2021-06-29T03:31:36Z
dc.date.available 2021-06-29T03:31:36Z
dc.date.issued 2020-01-15 es_ES
dc.identifier.issn 0016-2361 es_ES
dc.identifier.uri http://hdl.handle.net/10251/168487
dc.description.abstract [EN] The fundamental behaviour on ignition and combustion characteristics of blends of Hydrotreated Vegetable Oil and Liquid Petroleum Gas was investigated in a constant high pressure, high temperature combustion chamber, using a prototype lab-scale injection system adapted from a conventional common-rail system to conduct the injection events, ensuring that fuel was liquid at any point of the injection system and avoiding the formation of fuel vapour bubbles that could alter the injected fuel behaviour. The ignition delay, flame lift-off length and the soot formation were studied by means of high-speed imaging techniques, for different operating conditions. The aim of the work is to characterize the effect of Hydrotreated Vegetable Oil-Liquid Petroleum Gas blend ratios on the previously mentioned parameters. Experimental results show that the behaviour of the fuel blends follow the expected trends of conventional diesel type fuels when varying ambient temperature, density and injection pressure. Hydrotreated Vegetable Oil, being the highest reactivity fraction, controls auto ignition of the blend. However, Liquid Petroleum Gas acts as combustion inhibitor increasing both ignition delay and lift-off length as its ratio in the blend increases. As a consequence, the differences observed in terms of flame radiation suggest that increasing Liquid Petroleum Gas fraction reduces soot formation as it promotes a higher air/mixture. es_ES
dc.description.sponsorship The authors acknowledge that this research work has been partly funded by the Government of Spain and FEDER under TRANCO project (TRA2017-87694-R) and by Universitat Politècnica de València through the Programa de Ayudas de Investigación y Desarrollo (PAID01-18) program. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Fuel es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Hydrotreated vegetable oil es_ES
dc.subject Liquefied petroleum gas es_ES
dc.subject Dual fuel es_ES
dc.subject Soot formation es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.subject.classification INGENIERIA AEROESPACIAL es_ES
dc.title Experimental study of influence of Liquefied Petroleum Gas addition in Hydrotreated Vegetable Oil fuel on ignition delay, flame lift off length and soot emission under diesel-like conditions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.fuel.2019.116377 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-01-18/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TRA2017-87694-R/ES/REDUCCION DE CO2 EN EL TRANSPORTE MEDIANTE LA INYECCION DIRECTA DUAL-FUEL DE BIOCOMBUSTIBLES DE SEGUNDA GENERACION/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Pastor, JV.; García Martínez, A.; Mico Reche, C.; Garcia-Carrero, AA. (2020). Experimental study of influence of Liquefied Petroleum Gas addition in Hydrotreated Vegetable Oil fuel on ignition delay, flame lift off length and soot emission under diesel-like conditions. Fuel. 260:1-11. https://doi.org/10.1016/j.fuel.2019.116377 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.fuel.2019.116377 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 260 es_ES
dc.relation.pasarela S\395625 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Roadmap to a Single European Transport Area – Towards a competitive and resource efficient. Transport System, White Paper COM(2011):144–final. es_ES
dc.description.references Sheehan J, Camobreco V, Duffield J, Graboski M, Shapouri H. An Overview of Biodiesel and Petroleum Diesel Life Cycles, NREL/TP-580-24772. es_ES
dc.description.references Hasan, M. M., & Rahman, M. M. (2017). Performance and emission characteristics of biodiesel–diesel blend and environmental and economic impacts of biodiesel production: A review. Renewable and Sustainable Energy Reviews, 74, 938-948. doi:10.1016/j.rser.2017.03.045 es_ES
dc.description.references Bhardwaj, O. P., Kolbeck, A. F., Kkoerfer, T., & Honkanen, M. (2013). Potential of Hydrogenated Vegetable Oil (HVO) in Future High Efficiency Combustion System. SAE International Journal of Fuels and Lubricants, 6(1), 157-169. doi:10.4271/2013-01-1677 es_ES
dc.description.references Chakraborty, A., Roy, S., & Banerjee, R. (2016). An experimental based ANN approach in mapping performance-emission characteristics of a diesel engine operating in dual-fuel mode with LPG. Journal of Natural Gas Science and Engineering, 28, 15-30. doi:10.1016/j.jngse.2015.11.024 es_ES
dc.description.references Aatola, H., Larmi, M., Sarjovaara, T., & Mikkonen, S. (2008). Hydrotreated Vegetable Oil (HVO) as a Renewable Diesel Fuel: Trade-off between NOx, Particulate Emission, and Fuel Consumption of a Heavy Duty Engine. SAE International Journal of Engines, 1(1), 1251-1262. doi:10.4271/2008-01-2500 es_ES
dc.description.references Neste Oil, Hydrotreated vegetable oil, premium renewable biofuel for diesel engines, 2014. es_ES
dc.description.references Singh, D., Subramanian, K. A., Bal, R., Singh, S. P., & Badola, R. (2018). Combustion and emission characteristics of a light duty diesel engine fueled with hydro-processed renewable diesel. Energy, 154, 498-507. doi:10.1016/j.energy.2018.04.139 es_ES
dc.description.references Zhong, W., Pachiannan, T., He, Z., Xuan, T., & Wang, Q. (2019). Experimental study of ignition, lift-off length and emission characteristics of diesel/hydrogenated catalytic biodiesel blends. Applied Energy, 235, 641-652. doi:10.1016/j.apenergy.2018.10.115 es_ES
dc.description.references Tira, H. S., Herreros, J. M., Tsolakis, A., & Wyszynski, M. L. (2014). Influence of the addition of LPG-reformate and H2 on an engine dually fuelled with LPG–diesel, –RME and –GTL Fuels. Fuel, 118, 73-82. doi:10.1016/j.fuel.2013.10.065 es_ES
dc.description.references Goto, S., Lee, D., Shakal, J., Harayama, N., Honjyo, F., & Ueno, H. (1999). Performance and Emissions of an LPG Lean-Burn Engine for Heavy Duty Vehicles. SAE Technical Paper Series. doi:10.4271/1999-01-1513 es_ES
dc.description.references Musthafa, M. M. (2019). A comparative study on coated and uncoated diesel engine performance and emissions running on dual fuel (LPG – biodiesel) with and without additive. Industrial Crops and Products, 128, 194-198. doi:10.1016/j.indcrop.2018.11.012 es_ES
dc.description.references Hashimoto, K., Ohta, H., Hirasawa, T., Arai, M., & Tamura, M. (2002). Evaluation of Ignition Quality of LPG with Cetane Number Improver. SAE Technical Paper Series. doi:10.4271/2002-01-0870 es_ES
dc.description.references Benajes, J., Molina, S., García, A., & Monsalve-Serrano, J. (2015). Effects of low reactivity fuel characteristics and blending ratio on low load RCCI (reactivity controlled compression ignition) performance and emissions in a heavy-duty diesel engine. Energy, 90, 1261-1271. doi:10.1016/j.energy.2015.06.088 es_ES
dc.description.references Benajes, J., García, A., Monsalve-Serrano, J., & Boronat, V. (2016). Dual-Fuel Combustion for Future Clean and Efficient Compression Ignition Engines. Applied Sciences, 7(1), 36. doi:10.3390/app7010036 es_ES
dc.description.references Benajes, J., García, A., Monsalve-Serrano, J., & Boronat, V. (2017). Achieving clean and efficient engine operation up to full load by combining optimized RCCI and dual-fuel diesel-gasoline combustion strategies. Energy Conversion and Management, 136, 142-151. doi:10.1016/j.enconman.2017.01.010 es_ES
dc.description.references Kokjohn, S. L., Hanson, R. M., Splitter, D. A., & Reitz, R. D. (2011). Fuel reactivity controlled compression ignition (RCCI): a pathway to controlled high-efficiency clean combustion. International Journal of Engine Research, 12(3), 209-226. doi:10.1177/1468087411401548 es_ES
dc.description.references Payri, R., Gimeno, J., Bardi, M., & Plazas, A. H. (2013). Study liquid length penetration results obtained with a direct acting piezo electric injector. Applied Energy, 106, 152-162. doi:10.1016/j.apenergy.2013.01.027 es_ES
dc.description.references Gimeno, J., Martí-Aldaraví, P., Carreres, M., & Peraza, J. E. (2018). Effect of the nozzle holder on injected fuel temperature for experimental test rigs and its influence on diesel sprays. International Journal of Engine Research, 19(3), 374-389. doi:10.1177/1468087417751531 es_ES
dc.description.references Pastor, J. V., García-Oliver, J. M., García, A., Micó, C., & Möller, S. (2016). Application of optical diagnostics to the quantification of soot in n-alkane flames under diesel conditions. Combustion and Flame, 164, 212-223. doi:10.1016/j.combustflame.2015.11.018 es_ES
dc.description.references Pastor, J., Garcia-Oliver, J. M., Garcia, A., & Nareddy, V. R. (2017). Characterization of Spray Evaporation and Mixing Using Blends of Commercial Gasoline and Diesel Fuels in Engine-Like Conditions. SAE Technical Paper Series. doi:10.4271/2017-01-0843 es_ES
dc.description.references Pastor, J. V., Payri, R., Garcia-Oliver, J. M., & Briceño, F. J. (2013). Schlieren Methodology for the Analysis of Transient Diesel Flame Evolution. SAE International Journal of Engines, 6(3), 1661-1676. doi:10.4271/2013-24-0041 es_ES
dc.description.references Siebers, D. L. (1998). Liquid-Phase Fuel Penetration in Diesel Sprays. SAE Technical Paper Series. doi:10.4271/980809 es_ES
dc.description.references ECN. Engine Combustion Network. https://ecn.sandia.gov/. es_ES
dc.description.references Desantes, J. M., Pastor, J. V., García-Oliver, J. M., & Briceño, F. J. (2014). An experimental analysis on the evolution of the transient tip penetration in reacting Diesel sprays. Combustion and Flame, 161(8), 2137-2150. doi:10.1016/j.combustflame.2014.01.022 es_ES
dc.description.references Payri, R., Viera, J. P., Pei, Y., & Som, S. (2015). Experimental and numerical study of lift-off length and ignition delay of a two-component diesel surrogate. Fuel, 158, 957-967. doi:10.1016/j.fuel.2014.11.072 es_ES
dc.description.references Reyes, M., Tinaut, F. V., Giménez, B., & Pastor, J. V. (2018). Effect of hydrogen addition on the OH* and CH* chemiluminescence emissions of premixed combustion of methane-air mixtures. International Journal of Hydrogen Energy, 43(42), 19778-19791. doi:10.1016/j.ijhydene.2018.09.005 es_ES
dc.description.references Siebers, D. L., & Higgins, B. (2001). Flame Lift-Off on Direct-Injection Diesel Sprays Under Quiescent Conditions. SAE Technical Paper Series. doi:10.4271/2001-01-0530 es_ES
dc.description.references Benajes, J., Payri, R., Bardi, M., & Martí-Aldaraví, P. (2013). Experimental characterization of diesel ignition and lift-off length using a single-hole ECN injector. Applied Thermal Engineering, 58(1-2), 554-563. doi:10.1016/j.applthermaleng.2013.04.044 es_ES
dc.description.references Payri, R., Salvador, F. J., Manin, J., & Viera, A. (2016). Diesel ignition delay and lift-off length through different methodologies using a multi-hole injector. Applied Energy, 162, 541-550. doi:10.1016/j.apenergy.2015.10.118 es_ES
dc.description.references Kook, S., & Pickett, L. M. (2012). Liquid length and vapor penetration of conventional, Fischer–Tropsch, coal-derived, and surrogate fuel sprays at high-temperature and high-pressure ambient conditions. Fuel, 93, 539-548. doi:10.1016/j.fuel.2011.10.004 es_ES
dc.description.references Payri, R., García-Oliver, J. M., Xuan, T., & Bardi, M. (2015). A study on diesel spray tip penetration and radial expansion under reacting conditions. Applied Thermal Engineering, 90, 619-629. doi:10.1016/j.applthermaleng.2015.07.042 es_ES
dc.description.references Payri, R., Viera, J. P., Gopalakrishnan, V., & Szymkowicz, P. G. (2017). The effect of nozzle geometry over ignition delay and flame lift-off of reacting direct-injection sprays for three different fuels. Fuel, 199, 76-90. doi:10.1016/j.fuel.2017.02.075 es_ES
dc.description.references Pickett, L. M., Siebers, D. L., & Idicheria, C. A. (2005). Relationship Between Ignition Processes and the Lift-Off Length of Diesel Fuel Jets. SAE Technical Paper Series. doi:10.4271/2005-01-3843 es_ES
dc.description.references Xuan, T., Desantes, J. M., Pastor, J. V., & Garcia-Oliver, J. M. (2019). Soot temperature characterization of spray a flames by combined extinction and radiation methodology. Combustion and Flame, 204, 290-303. doi:10.1016/j.combustflame.2019.03.023 es_ES
dc.description.references Desantes, J. M., Pastor, J. V., García-Oliver, J. M., & Pastor, J. M. (2009). A 1D model for the description of mixing-controlled reacting diesel sprays. Combustion and Flame, 156(1), 234-249. doi:10.1016/j.combustflame.2008.10.008 es_ES


This item appears in the following Collection(s)

Show simple item record