Owusu, P. A., & Asumadu-Sarkodie, S. (2016). A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Engineering, 3(1), 1167990. doi:10.1080/23311916.2016.1167990
Corma, A., Iborra, S., & Velty, A. (2007). Chemical Routes for the Transformation of Biomass into Chemicals. Chemical Reviews, 107(6), 2411-2502. doi:10.1021/cr050989d
Settle, A. E., Berstis, L., Rorrer, N. A., Roman-Leshkóv, Y., Beckham, G. T., Richards, R. M., & Vardon, D. R. (2017). Heterogeneous Diels–Alder catalysis for biomass-derived aromatic compounds. Green Chemistry, 19(15), 3468-3492. doi:10.1039/c7gc00992e
[+]
Owusu, P. A., & Asumadu-Sarkodie, S. (2016). A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Engineering, 3(1), 1167990. doi:10.1080/23311916.2016.1167990
Corma, A., Iborra, S., & Velty, A. (2007). Chemical Routes for the Transformation of Biomass into Chemicals. Chemical Reviews, 107(6), 2411-2502. doi:10.1021/cr050989d
Settle, A. E., Berstis, L., Rorrer, N. A., Roman-Leshkóv, Y., Beckham, G. T., Richards, R. M., & Vardon, D. R. (2017). Heterogeneous Diels–Alder catalysis for biomass-derived aromatic compounds. Green Chemistry, 19(15), 3468-3492. doi:10.1039/c7gc00992e
Williams, C. L., Chang, C.-C., Do, P., Nikbin, N., Caratzoulas, S., Vlachos, D. G., … Dauenhauer, P. J. (2012). Cycloaddition of Biomass-Derived Furans for Catalytic Production of Renewable p-Xylene. ACS Catalysis, 2(6), 935-939. doi:10.1021/cs300011a
Pacheco, J. J., & Davis, M. E. (2014). Synthesis of terephthalic acid via Diels-Alder reactions with ethylene and oxidized variants of 5-hydroxymethylfurfural. Proceedings of the National Academy of Sciences, 111(23), 8363-8367. doi:10.1073/pnas.1408345111
Tomás, R. A. F., Bordado, J. C. M., & Gomes, J. F. P. (2013). p-Xylene Oxidation to Terephthalic Acid: A Literature Review Oriented toward Process Optimization and Development. Chemical Reviews, 113(10), 7421-7469. doi:10.1021/cr300298j
Lin, Y.-C., & Huber, G. W. (2009). The critical role of heterogeneous catalysis in lignocellulosic biomass conversion. Energy Environ. Sci., 2(1), 68-80. doi:10.1039/b814955k
Do, P. T. M., McAtee, J. R., Watson, D. A., & Lobo, R. F. (2012). Elucidation of Diels–Alder Reaction Network of 2,5-Dimethylfuran and Ethylene on HY Zeolite Catalyst. ACS Catalysis, 3(1), 41-46. doi:10.1021/cs300673b
Binder, J. B., & Raines, R. T. (2009). Simple Chemical Transformation of Lignocellulosic Biomass into Furans for Fuels and Chemicals. Journal of the American Chemical Society, 131(5), 1979-1985. doi:10.1021/ja808537j
FitzPatrick, M., Champagne, P., Cunningham, M. F., & Whitney, R. A. (2010). A biorefinery processing perspective: Treatment of lignocellulosic materials for the production of value-added products. Bioresource Technology, 101(23), 8915-8922. doi:10.1016/j.biortech.2010.06.125
Rohling, R. Y., Tranca, I. C., Hensen, E. J. M., & Pidko, E. A. (2018). Electronic Structure Analysis of the Diels–Alder Cycloaddition Catalyzed by Alkali-Exchanged Faujasites. The Journal of Physical Chemistry C, 122(26), 14733-14743. doi:10.1021/acs.jpcc.8b04409
Rohling, R. Y., Uslamin, E., Zijlstra, B., Tranca, I. C., Filot, I. A. W., Hensen, E. J. M., & Pidko, E. A. (2017). An Active Alkali-Exchanged Faujasite Catalyst for p-Xylene Production via the One-Pot Diels–Alder Cycloaddition/Dehydration Reaction of 2,5-Dimethylfuran with Ethylene. ACS Catalysis, 8(2), 760-769. doi:10.1021/acscatal.7b03343
Kim, T.-W., Kim, S.-Y., Kim, J.-C., Kim, Y., Ryoo, R., & Kim, C.-U. (2016). Selective p-xylene production from biomass-derived dimethylfuran and ethylene over zeolite beta nanosponge catalysts. Applied Catalysis B: Environmental, 185, 100-109. doi:10.1016/j.apcatb.2015.11.046
Chang, C.-C., Je Cho, H., Yu, J., Gorte, R. J., Gulbinski, J., Dauenhauer, P., & Fan, W. (2016). Lewis acid zeolites for tandem Diels–Alder cycloaddition and dehydration of biomass-derived dimethylfuran and ethylene to renewable p-xylene. Green Chemistry, 18(5), 1368-1376. doi:10.1039/c5gc02164b
Cho, H. J., Ren, L., Vattipalli, V., Yeh, Y.-H., Gould, N., Xu, B., … Fan, W. (2017). Renewablep-Xylene from 2,5-Dimethylfuran and Ethylene Using Phosphorus-Containing Zeolite Catalysts. ChemCatChem, 9(3), 398-402. doi:10.1002/cctc.201601294
Zhao, R., Zhao, Z., Li, S., Parvulescu, A.-N., Müller, U., & Zhang, W. (2018). Excellent Performances of Dealuminated H-Beta Zeolites from Organotemplate-Free Synthesis in Conversion of Biomass-derived 2,5-Dimethylfuran to Renewable p
-Xylene. ChemSusChem, 11(21), 3803-3811. doi:10.1002/cssc.201801504
Chang, C.-C., Green, S. K., Williams, C. L., Dauenhauer, P. J., & Fan, W. (2014). Ultra-selective cycloaddition of dimethylfuran for renewable p-xylene with H-BEA. Green Chem., 16(2), 585-588. doi:10.1039/c3gc40740c
Li, Y.-P., Head-Gordon, M., & Bell, A. T. (2014). Computational Study of p-Xylene Synthesis from Ethylene and 2,5-Dimethylfuran Catalyzed by H-BEA. The Journal of Physical Chemistry C, 118(38), 22090-22095. doi:10.1021/jp506664c
Nikbin, N., Feng, S., Caratzoulas, S., & Vlachos, D. G. (2014). p-Xylene Formation by Dehydrative Aromatization of a Diels–Alder Product in Lewis and Brønsted Acidic Zeolites. The Journal of Physical Chemistry C, 118(42), 24415-24424. doi:10.1021/jp506027f
Rohling, R. Y., Hensen, E. J. M., & Pidko, E. A. (2017). Multi-site Cooperativity in Alkali-Metal-Exchanged Faujasites for the Production of Biomass-Derived Aromatics. ChemPhysChem, 19(4), 446-458. doi:10.1002/cphc.201701058
DEROUANE, E. (1988). Surface curvature effects in physisorption and catalysis by microporous solids and molecular sieves. Journal of Catalysis, 110(1), 58-73. doi:10.1016/0021-9517(88)90297-7
Corma, A. (2004). Attempts to Fill the Gap Between Enzymatic, Homogeneous, and Heterogeneous Catalysis. Catalysis Reviews, 46(3-4), 369-417. doi:10.1081/cr-200036732
Gounder, R., & Iglesia, E. (2013). The catalytic diversity of zeolites: confinement and solvation effects within voids of molecular dimensions. Chemical Communications, 49(34), 3491. doi:10.1039/c3cc40731d
Márquez, F., García, H., Palomares, E., Fernández, L., & Corma, A. (2000). Spectroscopic Evidence in Support of the Molecular Orbital Confinement Concept: Case of Anthracene Incorporated in Zeolites. Journal of the American Chemical Society, 122(27), 6520-6521. doi:10.1021/ja0003066
Bhan, A., Allian, A. D., Sunley, G. J., Law, D. J., & Iglesia, E. (2007). Specificity of Sites within Eight-Membered Ring Zeolite Channels for Carbonylation of Methyls to Acetyls. Journal of the American Chemical Society, 129(16), 4919-4924. doi:10.1021/ja070094d
Bhan, A., & Iglesia, E. (2008). A Link between Reactivity and Local Structure in Acid Catalysis on Zeolites. Accounts of Chemical Research, 41(4), 559-567. doi:10.1021/ar700181t
Boronat, M., Martínez-Sánchez, C., Law, D., & Corma, A. (2008). Enzyme-like Specificity in Zeolites: A Unique Site Position in Mordenite for Selective Carbonylation of Methanol and Dimethyl Ether with CO. Journal of the American Chemical Society, 130(48), 16316-16323. doi:10.1021/ja805607m
Gallego, E. M., Portilla, M. T., Paris, C., León-Escamilla, A., Boronat, M., Moliner, M., & Corma, A. (2017). «Ab initio» synthesis of zeolites for preestablished catalytic reactions. Science, 355(6329), 1051-1054. doi:10.1126/science.aal0121
Li, C., Paris, C., Martínez-Triguero, J., Boronat, M., Moliner, M., & Corma, A. (2018). Synthesis of reaction‐adapted zeolites as methanol-to-olefins catalysts with mimics of reaction intermediates as organic structure‐directing agents. Nature Catalysis, 1(7), 547-554. doi:10.1038/s41929-018-0104-7
Dessau, R. M. (1986). Catalysis of Diels–Alder reactions by zeolites. J. Chem. Soc., Chem. Commun., (15), 1167-1168. doi:10.1039/c39860001167
Gallego, E. M., Paris, C., Cantín, Á., Moliner, M., & Corma, A. (2019). Conceptual similarities between zeolites and artificial enzymes. Chemical Science, 10(34), 8009-8015. doi:10.1039/c9sc02477h
Margarit, V. J., Martínez-Armero, M. E., Navarro, M. T., Martínez, C., & Corma, A. (2015). Direct Dual-Template Synthesis of MWW Zeolite Monolayers. Angewandte Chemie International Edition, 54(46), 13724-13728. doi:10.1002/anie.201506822
Leonowicz, M. E., Lawton, J. A., Lawton, S. L., & Rubin, M. K. (1994). MCM-22: A Molecular Sieve with Two Independent Multidimensional Channel Systems. Science, 264(5167), 1910-1913. doi:10.1126/science.264.5167.1910
Corma, A., Corell, C., & Pérez-Pariente, J. (1995). Synthesis and characterization of the MCM-22 zeolite. Zeolites, 15(1), 2-8. doi:10.1016/0144-2449(94)00013-i
Min, H.-K., & Hong, S. B. (2011). Mechanistic Investigations of Ethylbenzene Disproportionation over Medium-Pore Zeolites with Different Framework Topologies. The Journal of Physical Chemistry C, 115(32), 16124-16133. doi:10.1021/jp204945c
LAFORGE, S. (2004). Xylene transformation over H-MCM-22 zeolites3. Role of the three pore systems in o-, m- and p-xylene transformations. Applied Catalysis A: General, 268(1-2), 33-41. doi:10.1016/j.apcata.2004.03.027
Corma, A., Fornes, V., Pergher, S. B., Maesen, T. L. M., & Buglass, J. G. (1998). Delaminated zeolite precursors as selective acidic catalysts. Nature, 396(6709), 353-356. doi:10.1038/24592
Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Physical Review B, 54(16), 11169-11186. doi:10.1103/physrevb.54.11169
Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/physrevlett.77.3865
Perdew, J. P., Burke, K., & Ernzerhof, M. (1997). Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)]. Physical Review Letters, 78(7), 1396-1396. doi:10.1103/physrevlett.78.1396
Grimme, S. (2006). Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry, 27(15), 1787-1799. doi:10.1002/jcc.20495
Blöchl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50(24), 17953-17979. doi:10.1103/physrevb.50.17953
Kresse, G., & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59(3), 1758-1775. doi:10.1103/physrevb.59.1758
[-]