- -

Production of aromatics from biomass by computer-aided selection of the zeolite catalyst

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Production of aromatics from biomass by computer-aided selection of the zeolite catalyst

Show simple item record

Files in this item

dc.contributor.author Margarit Benavent, Vicente Juan es_ES
dc.contributor.author Gallego, Eva M. es_ES
dc.contributor.author Paris, Cecilia es_ES
dc.contributor.author Boronat Zaragoza, Mercedes es_ES
dc.contributor.author Moliner Marin, Manuel es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.date.accessioned 2021-06-30T03:30:54Z
dc.date.available 2021-06-30T03:30:54Z
dc.date.issued 2020-08-07 es_ES
dc.identifier.issn 1463-9262 es_ES
dc.identifier.uri http://hdl.handle.net/10251/168539
dc.description.abstract [EN] Taking into account that the transformation of biomass-derived 2,5-dimethylfuran (DMF) top-xylene involves Diels-Alder (DA) cycloaddition as the limiting step, the use of an ITQ-2 zeolite obtained by direct synthesis (DS-ITQ-2) as a catalyst for this reaction is proposed based on the fact that the organic molecule employed for its synthesis mimics the size and shape of the DA oxanorbornene cycloadduct intermediate. Periodic Density Functional Theory (DFT) calculations reveal a better stabilization of the oxanorbornene intermediate within the external hemicavities or "cups" of the DS-ITQ-2 zeolite (MWW-framework) than in other zeolites employed for this reaction, such as FAU and Beta. Interestingly, experimental results also show improved catalytic conversion values for the DS-ITQ-2 zeolite compared to FAU and Beta, in good agreement with the stabilization energies calculated by DFT. The "ab initio" catalyst design presented here to enhance the catalytic performance for the transformation of biomass-derived products is a valuable example that could be employed for the rationalization of other chemical processes catalyzed by zeolites. es_ES
dc.description.sponsorship This work has been supported by the European Union through ERC-AdG-2014-671093 (SynCatMatch) and by Spanish Government through "Severo Ochoa" (SEV-2016-0683, MINECO), MAT2017-82288-C2-1-P (AEI/FEDER, UE) and RTI2018-101033-B-I00 (MCIU/AEI/FEDER, UE). E. M. G. acknowledges "La Caixa - Severo Ochoa" International PhD Fellowships (call 2015). Elisa Garcia is acknowledged for her technical assistance in this work. The Electron Microscopy Service of the UPV is also acknowledged for their help in sample characterization. We appreciate the support of ExxonMobil Research and Engineering for their help with our efforts in fundamental catalytic research. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Green Chemistry es_ES
dc.rights Reconocimiento - No comercial (by-nc) es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Production of aromatics from biomass by computer-aided selection of the zeolite catalyst es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/d0gc01031f es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101033-B-I00/ES/DISEÑO DE CATALIZADORES MULTIFUNCIONALES PARA LA CONVERSION EFICIENTE DE BIOGAS Y GAS NATURAL A HIDROCARBUROS DE INTERES INDUSTRIAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-82288-C2-1-P/ES/MATERIALES HIBRIDOS MULTIFUNCIONALES BASADOS EN NANO-UNIDADES ESTRUCTURALES ACTIVAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Margarit Benavent, VJ.; Gallego, EM.; Paris, C.; Boronat Zaragoza, M.; Moliner Marin, M.; Corma Canós, A. (2020). Production of aromatics from biomass by computer-aided selection of the zeolite catalyst. Green Chemistry. 22(15):5123-5131. https://doi.org/10.1039/d0gc01031f es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/d0gc01031f es_ES
dc.description.upvformatpinicio 5123 es_ES
dc.description.upvformatpfin 5131 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 22 es_ES
dc.description.issue 15 es_ES
dc.relation.pasarela S\424853 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona es_ES
dc.description.references Owusu, P. A., & Asumadu-Sarkodie, S. (2016). A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Engineering, 3(1), 1167990. doi:10.1080/23311916.2016.1167990 es_ES
dc.description.references Corma, A., Iborra, S., & Velty, A. (2007). Chemical Routes for the Transformation of Biomass into Chemicals. Chemical Reviews, 107(6), 2411-2502. doi:10.1021/cr050989d es_ES
dc.description.references Settle, A. E., Berstis, L., Rorrer, N. A., Roman-Leshkóv, Y., Beckham, G. T., Richards, R. M., & Vardon, D. R. (2017). Heterogeneous Diels–Alder catalysis for biomass-derived aromatic compounds. Green Chemistry, 19(15), 3468-3492. doi:10.1039/c7gc00992e es_ES
dc.description.references Williams, C. L., Chang, C.-C., Do, P., Nikbin, N., Caratzoulas, S., Vlachos, D. G., … Dauenhauer, P. J. (2012). Cycloaddition of Biomass-Derived Furans for Catalytic Production of Renewable p-Xylene. ACS Catalysis, 2(6), 935-939. doi:10.1021/cs300011a es_ES
dc.description.references Pacheco, J. J., & Davis, M. E. (2014). Synthesis of terephthalic acid via Diels-Alder reactions with ethylene and oxidized variants of 5-hydroxymethylfurfural. Proceedings of the National Academy of Sciences, 111(23), 8363-8367. doi:10.1073/pnas.1408345111 es_ES
dc.description.references Tomás, R. A. F., Bordado, J. C. M., & Gomes, J. F. P. (2013). p-Xylene Oxidation to Terephthalic Acid: A Literature Review Oriented toward Process Optimization and Development. Chemical Reviews, 113(10), 7421-7469. doi:10.1021/cr300298j es_ES
dc.description.references Lin, Y.-C., & Huber, G. W. (2009). The critical role of heterogeneous catalysis in lignocellulosic biomass conversion. Energy Environ. Sci., 2(1), 68-80. doi:10.1039/b814955k es_ES
dc.description.references Do, P. T. M., McAtee, J. R., Watson, D. A., & Lobo, R. F. (2012). Elucidation of Diels–Alder Reaction Network of 2,5-Dimethylfuran and Ethylene on HY Zeolite Catalyst. ACS Catalysis, 3(1), 41-46. doi:10.1021/cs300673b es_ES
dc.description.references Binder, J. B., & Raines, R. T. (2009). Simple Chemical Transformation of Lignocellulosic Biomass into Furans for Fuels and Chemicals. Journal of the American Chemical Society, 131(5), 1979-1985. doi:10.1021/ja808537j es_ES
dc.description.references FitzPatrick, M., Champagne, P., Cunningham, M. F., & Whitney, R. A. (2010). A biorefinery processing perspective: Treatment of lignocellulosic materials for the production of value-added products. Bioresource Technology, 101(23), 8915-8922. doi:10.1016/j.biortech.2010.06.125 es_ES
dc.description.references Rohling, R. Y., Tranca, I. C., Hensen, E. J. M., & Pidko, E. A. (2018). Electronic Structure Analysis of the Diels–Alder Cycloaddition Catalyzed by Alkali-Exchanged Faujasites. The Journal of Physical Chemistry C, 122(26), 14733-14743. doi:10.1021/acs.jpcc.8b04409 es_ES
dc.description.references Rohling, R. Y., Uslamin, E., Zijlstra, B., Tranca, I. C., Filot, I. A. W., Hensen, E. J. M., & Pidko, E. A. (2017). An Active Alkali-Exchanged Faujasite Catalyst for p-Xylene Production via the One-Pot Diels–Alder Cycloaddition/Dehydration Reaction of 2,5-Dimethylfuran with Ethylene. ACS Catalysis, 8(2), 760-769. doi:10.1021/acscatal.7b03343 es_ES
dc.description.references Kim, T.-W., Kim, S.-Y., Kim, J.-C., Kim, Y., Ryoo, R., & Kim, C.-U. (2016). Selective p-xylene production from biomass-derived dimethylfuran and ethylene over zeolite beta nanosponge catalysts. Applied Catalysis B: Environmental, 185, 100-109. doi:10.1016/j.apcatb.2015.11.046 es_ES
dc.description.references Chang, C.-C., Je Cho, H., Yu, J., Gorte, R. J., Gulbinski, J., Dauenhauer, P., & Fan, W. (2016). Lewis acid zeolites for tandem Diels–Alder cycloaddition and dehydration of biomass-derived dimethylfuran and ethylene to renewable p-xylene. Green Chemistry, 18(5), 1368-1376. doi:10.1039/c5gc02164b es_ES
dc.description.references Cho, H. J., Ren, L., Vattipalli, V., Yeh, Y.-H., Gould, N., Xu, B., … Fan, W. (2017). Renewablep-Xylene from 2,5-Dimethylfuran and Ethylene Using Phosphorus-Containing Zeolite Catalysts. ChemCatChem, 9(3), 398-402. doi:10.1002/cctc.201601294 es_ES
dc.description.references Zhao, R., Zhao, Z., Li, S., Parvulescu, A.-N., Müller, U., & Zhang, W. (2018). Excellent Performances of Dealuminated H-Beta Zeolites from Organotemplate-Free Synthesis in Conversion of Biomass-derived 2,5-Dimethylfuran to Renewable p -Xylene. ChemSusChem, 11(21), 3803-3811. doi:10.1002/cssc.201801504 es_ES
dc.description.references Chang, C.-C., Green, S. K., Williams, C. L., Dauenhauer, P. J., & Fan, W. (2014). Ultra-selective cycloaddition of dimethylfuran for renewable p-xylene with H-BEA. Green Chem., 16(2), 585-588. doi:10.1039/c3gc40740c es_ES
dc.description.references Li, Y.-P., Head-Gordon, M., & Bell, A. T. (2014). Computational Study of p-Xylene Synthesis from Ethylene and 2,5-Dimethylfuran Catalyzed by H-BEA. The Journal of Physical Chemistry C, 118(38), 22090-22095. doi:10.1021/jp506664c es_ES
dc.description.references Nikbin, N., Feng, S., Caratzoulas, S., & Vlachos, D. G. (2014). p-Xylene Formation by Dehydrative Aromatization of a Diels–Alder Product in Lewis and Brønsted Acidic Zeolites. The Journal of Physical Chemistry C, 118(42), 24415-24424. doi:10.1021/jp506027f es_ES
dc.description.references Rohling, R. Y., Hensen, E. J. M., & Pidko, E. A. (2017). Multi-site Cooperativity in Alkali-Metal-Exchanged Faujasites for the Production of Biomass-Derived Aromatics. ChemPhysChem, 19(4), 446-458. doi:10.1002/cphc.201701058 es_ES
dc.description.references DEROUANE, E. (1988). Surface curvature effects in physisorption and catalysis by microporous solids and molecular sieves. Journal of Catalysis, 110(1), 58-73. doi:10.1016/0021-9517(88)90297-7 es_ES
dc.description.references Corma, A. (2004). Attempts to Fill the Gap Between Enzymatic, Homogeneous, and Heterogeneous Catalysis. Catalysis Reviews, 46(3-4), 369-417. doi:10.1081/cr-200036732 es_ES
dc.description.references Gounder, R., & Iglesia, E. (2013). The catalytic diversity of zeolites: confinement and solvation effects within voids of molecular dimensions. Chemical Communications, 49(34), 3491. doi:10.1039/c3cc40731d es_ES
dc.description.references Márquez, F., García, H., Palomares, E., Fernández, L., & Corma, A. (2000). Spectroscopic Evidence in Support of the Molecular Orbital Confinement Concept:  Case of Anthracene Incorporated in Zeolites. Journal of the American Chemical Society, 122(27), 6520-6521. doi:10.1021/ja0003066 es_ES
dc.description.references Bhan, A., Allian, A. D., Sunley, G. J., Law, D. J., & Iglesia, E. (2007). Specificity of Sites within Eight-Membered Ring Zeolite Channels for Carbonylation of Methyls to Acetyls. Journal of the American Chemical Society, 129(16), 4919-4924. doi:10.1021/ja070094d es_ES
dc.description.references Bhan, A., & Iglesia, E. (2008). A Link between Reactivity and Local Structure in Acid Catalysis on Zeolites. Accounts of Chemical Research, 41(4), 559-567. doi:10.1021/ar700181t es_ES
dc.description.references Boronat, M., Martínez-Sánchez, C., Law, D., & Corma, A. (2008). Enzyme-like Specificity in Zeolites: A Unique Site Position in Mordenite for Selective Carbonylation of Methanol and Dimethyl Ether with CO. Journal of the American Chemical Society, 130(48), 16316-16323. doi:10.1021/ja805607m es_ES
dc.description.references Gallego, E. M., Portilla, M. T., Paris, C., León-Escamilla, A., Boronat, M., Moliner, M., & Corma, A. (2017). «Ab initio» synthesis of zeolites for preestablished catalytic reactions. Science, 355(6329), 1051-1054. doi:10.1126/science.aal0121 es_ES
dc.description.references Li, C., Paris, C., Martínez-Triguero, J., Boronat, M., Moliner, M., & Corma, A. (2018). Synthesis of reaction‐adapted zeolites as methanol-to-olefins catalysts with mimics of reaction intermediates as organic structure‐directing agents. Nature Catalysis, 1(7), 547-554. doi:10.1038/s41929-018-0104-7 es_ES
dc.description.references Dessau, R. M. (1986). Catalysis of Diels–Alder reactions by zeolites. J. Chem. Soc., Chem. Commun., (15), 1167-1168. doi:10.1039/c39860001167 es_ES
dc.description.references Gallego, E. M., Paris, C., Cantín, Á., Moliner, M., & Corma, A. (2019). Conceptual similarities between zeolites and artificial enzymes. Chemical Science, 10(34), 8009-8015. doi:10.1039/c9sc02477h es_ES
dc.description.references Margarit, V. J., Martínez-Armero, M. E., Navarro, M. T., Martínez, C., & Corma, A. (2015). Direct Dual-Template Synthesis of MWW Zeolite Monolayers. Angewandte Chemie International Edition, 54(46), 13724-13728. doi:10.1002/anie.201506822 es_ES
dc.description.references Leonowicz, M. E., Lawton, J. A., Lawton, S. L., & Rubin, M. K. (1994). MCM-22: A Molecular Sieve with Two Independent Multidimensional Channel Systems. Science, 264(5167), 1910-1913. doi:10.1126/science.264.5167.1910 es_ES
dc.description.references Corma, A., Corell, C., & Pérez-Pariente, J. (1995). Synthesis and characterization of the MCM-22 zeolite. Zeolites, 15(1), 2-8. doi:10.1016/0144-2449(94)00013-i es_ES
dc.description.references Min, H.-K., & Hong, S. B. (2011). Mechanistic Investigations of Ethylbenzene Disproportionation over Medium-Pore Zeolites with Different Framework Topologies. The Journal of Physical Chemistry C, 115(32), 16124-16133. doi:10.1021/jp204945c es_ES
dc.description.references LAFORGE, S. (2004). Xylene transformation over H-MCM-22 zeolites3. Role of the three pore systems in o-, m- and p-xylene transformations. Applied Catalysis A: General, 268(1-2), 33-41. doi:10.1016/j.apcata.2004.03.027 es_ES
dc.description.references Corma, A., Fornes, V., Pergher, S. B., Maesen, T. L. M., & Buglass, J. G. (1998). Delaminated zeolite precursors as selective acidic catalysts. Nature, 396(6709), 353-356. doi:10.1038/24592 es_ES
dc.description.references Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Physical Review B, 54(16), 11169-11186. doi:10.1103/physrevb.54.11169 es_ES
dc.description.references Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/physrevlett.77.3865 es_ES
dc.description.references Perdew, J. P., Burke, K., & Ernzerhof, M. (1997). Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)]. Physical Review Letters, 78(7), 1396-1396. doi:10.1103/physrevlett.78.1396 es_ES
dc.description.references Grimme, S. (2006). Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry, 27(15), 1787-1799. doi:10.1002/jcc.20495 es_ES
dc.description.references Blöchl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50(24), 17953-17979. doi:10.1103/physrevb.50.17953 es_ES
dc.description.references Kresse, G., & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59(3), 1758-1775. doi:10.1103/physrevb.59.1758 es_ES


This item appears in the following Collection(s)

Show simple item record