Mostrar el registro sencillo del ítem
dc.contributor.author | Margarit Benavent, Vicente Juan | es_ES |
dc.contributor.author | Gallego, Eva M. | es_ES |
dc.contributor.author | Paris, Cecilia | es_ES |
dc.contributor.author | Boronat Zaragoza, Mercedes | es_ES |
dc.contributor.author | Moliner Marin, Manuel | es_ES |
dc.contributor.author | Corma Canós, Avelino | es_ES |
dc.date.accessioned | 2021-06-30T03:30:54Z | |
dc.date.available | 2021-06-30T03:30:54Z | |
dc.date.issued | 2020-08-07 | es_ES |
dc.identifier.issn | 1463-9262 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/168539 | |
dc.description.abstract | [EN] Taking into account that the transformation of biomass-derived 2,5-dimethylfuran (DMF) top-xylene involves Diels-Alder (DA) cycloaddition as the limiting step, the use of an ITQ-2 zeolite obtained by direct synthesis (DS-ITQ-2) as a catalyst for this reaction is proposed based on the fact that the organic molecule employed for its synthesis mimics the size and shape of the DA oxanorbornene cycloadduct intermediate. Periodic Density Functional Theory (DFT) calculations reveal a better stabilization of the oxanorbornene intermediate within the external hemicavities or "cups" of the DS-ITQ-2 zeolite (MWW-framework) than in other zeolites employed for this reaction, such as FAU and Beta. Interestingly, experimental results also show improved catalytic conversion values for the DS-ITQ-2 zeolite compared to FAU and Beta, in good agreement with the stabilization energies calculated by DFT. The "ab initio" catalyst design presented here to enhance the catalytic performance for the transformation of biomass-derived products is a valuable example that could be employed for the rationalization of other chemical processes catalyzed by zeolites. | es_ES |
dc.description.sponsorship | This work has been supported by the European Union through ERC-AdG-2014-671093 (SynCatMatch) and by Spanish Government through "Severo Ochoa" (SEV-2016-0683, MINECO), MAT2017-82288-C2-1-P (AEI/FEDER, UE) and RTI2018-101033-B-I00 (MCIU/AEI/FEDER, UE). E. M. G. acknowledges "La Caixa - Severo Ochoa" International PhD Fellowships (call 2015). Elisa Garcia is acknowledged for her technical assistance in this work. The Electron Microscopy Service of the UPV is also acknowledged for their help in sample characterization. We appreciate the support of ExxonMobil Research and Engineering for their help with our efforts in fundamental catalytic research. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | The Royal Society of Chemistry | es_ES |
dc.relation.ispartof | Green Chemistry | es_ES |
dc.rights | Reconocimiento - No comercial (by-nc) | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Production of aromatics from biomass by computer-aided selection of the zeolite catalyst | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/d0gc01031f | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101033-B-I00/ES/DISEÑO DE CATALIZADORES MULTIFUNCIONALES PARA LA CONVERSION EFICIENTE DE BIOGAS Y GAS NATURAL A HIDROCARBUROS DE INTERES INDUSTRIAL/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-82288-C2-1-P/ES/MATERIALES HIBRIDOS MULTIFUNCIONALES BASADOS EN NANO-UNIDADES ESTRUCTURALES ACTIVAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Margarit Benavent, VJ.; Gallego, EM.; Paris, C.; Boronat Zaragoza, M.; Moliner Marin, M.; Corma Canós, A. (2020). Production of aromatics from biomass by computer-aided selection of the zeolite catalyst. Green Chemistry. 22(15):5123-5131. https://doi.org/10.1039/d0gc01031f | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1039/d0gc01031f | es_ES |
dc.description.upvformatpinicio | 5123 | es_ES |
dc.description.upvformatpfin | 5131 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 22 | es_ES |
dc.description.issue | 15 | es_ES |
dc.relation.pasarela | S\424853 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona | es_ES |
dc.description.references | Owusu, P. A., & Asumadu-Sarkodie, S. (2016). A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Engineering, 3(1), 1167990. doi:10.1080/23311916.2016.1167990 | es_ES |
dc.description.references | Corma, A., Iborra, S., & Velty, A. (2007). Chemical Routes for the Transformation of Biomass into Chemicals. Chemical Reviews, 107(6), 2411-2502. doi:10.1021/cr050989d | es_ES |
dc.description.references | Settle, A. E., Berstis, L., Rorrer, N. A., Roman-Leshkóv, Y., Beckham, G. T., Richards, R. M., & Vardon, D. R. (2017). Heterogeneous Diels–Alder catalysis for biomass-derived aromatic compounds. Green Chemistry, 19(15), 3468-3492. doi:10.1039/c7gc00992e | es_ES |
dc.description.references | Williams, C. L., Chang, C.-C., Do, P., Nikbin, N., Caratzoulas, S., Vlachos, D. G., … Dauenhauer, P. J. (2012). Cycloaddition of Biomass-Derived Furans for Catalytic Production of Renewable p-Xylene. ACS Catalysis, 2(6), 935-939. doi:10.1021/cs300011a | es_ES |
dc.description.references | Pacheco, J. J., & Davis, M. E. (2014). Synthesis of terephthalic acid via Diels-Alder reactions with ethylene and oxidized variants of 5-hydroxymethylfurfural. Proceedings of the National Academy of Sciences, 111(23), 8363-8367. doi:10.1073/pnas.1408345111 | es_ES |
dc.description.references | Tomás, R. A. F., Bordado, J. C. M., & Gomes, J. F. P. (2013). p-Xylene Oxidation to Terephthalic Acid: A Literature Review Oriented toward Process Optimization and Development. Chemical Reviews, 113(10), 7421-7469. doi:10.1021/cr300298j | es_ES |
dc.description.references | Lin, Y.-C., & Huber, G. W. (2009). The critical role of heterogeneous catalysis in lignocellulosic biomass conversion. Energy Environ. Sci., 2(1), 68-80. doi:10.1039/b814955k | es_ES |
dc.description.references | Do, P. T. M., McAtee, J. R., Watson, D. A., & Lobo, R. F. (2012). Elucidation of Diels–Alder Reaction Network of 2,5-Dimethylfuran and Ethylene on HY Zeolite Catalyst. ACS Catalysis, 3(1), 41-46. doi:10.1021/cs300673b | es_ES |
dc.description.references | Binder, J. B., & Raines, R. T. (2009). Simple Chemical Transformation of Lignocellulosic Biomass into Furans for Fuels and Chemicals. Journal of the American Chemical Society, 131(5), 1979-1985. doi:10.1021/ja808537j | es_ES |
dc.description.references | FitzPatrick, M., Champagne, P., Cunningham, M. F., & Whitney, R. A. (2010). A biorefinery processing perspective: Treatment of lignocellulosic materials for the production of value-added products. Bioresource Technology, 101(23), 8915-8922. doi:10.1016/j.biortech.2010.06.125 | es_ES |
dc.description.references | Rohling, R. Y., Tranca, I. C., Hensen, E. J. M., & Pidko, E. A. (2018). Electronic Structure Analysis of the Diels–Alder Cycloaddition Catalyzed by Alkali-Exchanged Faujasites. The Journal of Physical Chemistry C, 122(26), 14733-14743. doi:10.1021/acs.jpcc.8b04409 | es_ES |
dc.description.references | Rohling, R. Y., Uslamin, E., Zijlstra, B., Tranca, I. C., Filot, I. A. W., Hensen, E. J. M., & Pidko, E. A. (2017). An Active Alkali-Exchanged Faujasite Catalyst for p-Xylene Production via the One-Pot Diels–Alder Cycloaddition/Dehydration Reaction of 2,5-Dimethylfuran with Ethylene. ACS Catalysis, 8(2), 760-769. doi:10.1021/acscatal.7b03343 | es_ES |
dc.description.references | Kim, T.-W., Kim, S.-Y., Kim, J.-C., Kim, Y., Ryoo, R., & Kim, C.-U. (2016). Selective p-xylene production from biomass-derived dimethylfuran and ethylene over zeolite beta nanosponge catalysts. Applied Catalysis B: Environmental, 185, 100-109. doi:10.1016/j.apcatb.2015.11.046 | es_ES |
dc.description.references | Chang, C.-C., Je Cho, H., Yu, J., Gorte, R. J., Gulbinski, J., Dauenhauer, P., & Fan, W. (2016). Lewis acid zeolites for tandem Diels–Alder cycloaddition and dehydration of biomass-derived dimethylfuran and ethylene to renewable p-xylene. Green Chemistry, 18(5), 1368-1376. doi:10.1039/c5gc02164b | es_ES |
dc.description.references | Cho, H. J., Ren, L., Vattipalli, V., Yeh, Y.-H., Gould, N., Xu, B., … Fan, W. (2017). Renewablep-Xylene from 2,5-Dimethylfuran and Ethylene Using Phosphorus-Containing Zeolite Catalysts. ChemCatChem, 9(3), 398-402. doi:10.1002/cctc.201601294 | es_ES |
dc.description.references | Zhao, R., Zhao, Z., Li, S., Parvulescu, A.-N., Müller, U., & Zhang, W. (2018). Excellent Performances of Dealuminated H-Beta Zeolites from Organotemplate-Free Synthesis in Conversion of Biomass-derived 2,5-Dimethylfuran to Renewable p -Xylene. ChemSusChem, 11(21), 3803-3811. doi:10.1002/cssc.201801504 | es_ES |
dc.description.references | Chang, C.-C., Green, S. K., Williams, C. L., Dauenhauer, P. J., & Fan, W. (2014). Ultra-selective cycloaddition of dimethylfuran for renewable p-xylene with H-BEA. Green Chem., 16(2), 585-588. doi:10.1039/c3gc40740c | es_ES |
dc.description.references | Li, Y.-P., Head-Gordon, M., & Bell, A. T. (2014). Computational Study of p-Xylene Synthesis from Ethylene and 2,5-Dimethylfuran Catalyzed by H-BEA. The Journal of Physical Chemistry C, 118(38), 22090-22095. doi:10.1021/jp506664c | es_ES |
dc.description.references | Nikbin, N., Feng, S., Caratzoulas, S., & Vlachos, D. G. (2014). p-Xylene Formation by Dehydrative Aromatization of a Diels–Alder Product in Lewis and Brønsted Acidic Zeolites. The Journal of Physical Chemistry C, 118(42), 24415-24424. doi:10.1021/jp506027f | es_ES |
dc.description.references | Rohling, R. Y., Hensen, E. J. M., & Pidko, E. A. (2017). Multi-site Cooperativity in Alkali-Metal-Exchanged Faujasites for the Production of Biomass-Derived Aromatics. ChemPhysChem, 19(4), 446-458. doi:10.1002/cphc.201701058 | es_ES |
dc.description.references | DEROUANE, E. (1988). Surface curvature effects in physisorption and catalysis by microporous solids and molecular sieves. Journal of Catalysis, 110(1), 58-73. doi:10.1016/0021-9517(88)90297-7 | es_ES |
dc.description.references | Corma, A. (2004). Attempts to Fill the Gap Between Enzymatic, Homogeneous, and Heterogeneous Catalysis. Catalysis Reviews, 46(3-4), 369-417. doi:10.1081/cr-200036732 | es_ES |
dc.description.references | Gounder, R., & Iglesia, E. (2013). The catalytic diversity of zeolites: confinement and solvation effects within voids of molecular dimensions. Chemical Communications, 49(34), 3491. doi:10.1039/c3cc40731d | es_ES |
dc.description.references | Márquez, F., García, H., Palomares, E., Fernández, L., & Corma, A. (2000). Spectroscopic Evidence in Support of the Molecular Orbital Confinement Concept: Case of Anthracene Incorporated in Zeolites. Journal of the American Chemical Society, 122(27), 6520-6521. doi:10.1021/ja0003066 | es_ES |
dc.description.references | Bhan, A., Allian, A. D., Sunley, G. J., Law, D. J., & Iglesia, E. (2007). Specificity of Sites within Eight-Membered Ring Zeolite Channels for Carbonylation of Methyls to Acetyls. Journal of the American Chemical Society, 129(16), 4919-4924. doi:10.1021/ja070094d | es_ES |
dc.description.references | Bhan, A., & Iglesia, E. (2008). A Link between Reactivity and Local Structure in Acid Catalysis on Zeolites. Accounts of Chemical Research, 41(4), 559-567. doi:10.1021/ar700181t | es_ES |
dc.description.references | Boronat, M., Martínez-Sánchez, C., Law, D., & Corma, A. (2008). Enzyme-like Specificity in Zeolites: A Unique Site Position in Mordenite for Selective Carbonylation of Methanol and Dimethyl Ether with CO. Journal of the American Chemical Society, 130(48), 16316-16323. doi:10.1021/ja805607m | es_ES |
dc.description.references | Gallego, E. M., Portilla, M. T., Paris, C., León-Escamilla, A., Boronat, M., Moliner, M., & Corma, A. (2017). «Ab initio» synthesis of zeolites for preestablished catalytic reactions. Science, 355(6329), 1051-1054. doi:10.1126/science.aal0121 | es_ES |
dc.description.references | Li, C., Paris, C., Martínez-Triguero, J., Boronat, M., Moliner, M., & Corma, A. (2018). Synthesis of reaction‐adapted zeolites as methanol-to-olefins catalysts with mimics of reaction intermediates as organic structure‐directing agents. Nature Catalysis, 1(7), 547-554. doi:10.1038/s41929-018-0104-7 | es_ES |
dc.description.references | Dessau, R. M. (1986). Catalysis of Diels–Alder reactions by zeolites. J. Chem. Soc., Chem. Commun., (15), 1167-1168. doi:10.1039/c39860001167 | es_ES |
dc.description.references | Gallego, E. M., Paris, C., Cantín, Á., Moliner, M., & Corma, A. (2019). Conceptual similarities between zeolites and artificial enzymes. Chemical Science, 10(34), 8009-8015. doi:10.1039/c9sc02477h | es_ES |
dc.description.references | Margarit, V. J., Martínez-Armero, M. E., Navarro, M. T., Martínez, C., & Corma, A. (2015). Direct Dual-Template Synthesis of MWW Zeolite Monolayers. Angewandte Chemie International Edition, 54(46), 13724-13728. doi:10.1002/anie.201506822 | es_ES |
dc.description.references | Leonowicz, M. E., Lawton, J. A., Lawton, S. L., & Rubin, M. K. (1994). MCM-22: A Molecular Sieve with Two Independent Multidimensional Channel Systems. Science, 264(5167), 1910-1913. doi:10.1126/science.264.5167.1910 | es_ES |
dc.description.references | Corma, A., Corell, C., & Pérez-Pariente, J. (1995). Synthesis and characterization of the MCM-22 zeolite. Zeolites, 15(1), 2-8. doi:10.1016/0144-2449(94)00013-i | es_ES |
dc.description.references | Min, H.-K., & Hong, S. B. (2011). Mechanistic Investigations of Ethylbenzene Disproportionation over Medium-Pore Zeolites with Different Framework Topologies. The Journal of Physical Chemistry C, 115(32), 16124-16133. doi:10.1021/jp204945c | es_ES |
dc.description.references | LAFORGE, S. (2004). Xylene transformation over H-MCM-22 zeolites3. Role of the three pore systems in o-, m- and p-xylene transformations. Applied Catalysis A: General, 268(1-2), 33-41. doi:10.1016/j.apcata.2004.03.027 | es_ES |
dc.description.references | Corma, A., Fornes, V., Pergher, S. B., Maesen, T. L. M., & Buglass, J. G. (1998). Delaminated zeolite precursors as selective acidic catalysts. Nature, 396(6709), 353-356. doi:10.1038/24592 | es_ES |
dc.description.references | Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Physical Review B, 54(16), 11169-11186. doi:10.1103/physrevb.54.11169 | es_ES |
dc.description.references | Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/physrevlett.77.3865 | es_ES |
dc.description.references | Perdew, J. P., Burke, K., & Ernzerhof, M. (1997). Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)]. Physical Review Letters, 78(7), 1396-1396. doi:10.1103/physrevlett.78.1396 | es_ES |
dc.description.references | Grimme, S. (2006). Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry, 27(15), 1787-1799. doi:10.1002/jcc.20495 | es_ES |
dc.description.references | Blöchl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50(24), 17953-17979. doi:10.1103/physrevb.50.17953 | es_ES |
dc.description.references | Kresse, G., & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59(3), 1758-1775. doi:10.1103/physrevb.59.1758 | es_ES |