Adnan, N., Nordin S. M., Rahman I., Amini M. H. (2017) A market modeling review study on predicting Malaysian consumer behavior towards widespread adoption of PHEV/EV, Environmental Science and Pollution Research. Springer Verlag, 24(22), pp. 17955–17975. doi: https://doi.org/10.1007/s11356-017-9153-8
AECC. (2018). Available at: http://www.aedecc.com/enlaces-de-interes/informacion-estadistica/ ()
Ahmadi L, Croiset E, Elkamel A, Douglas P, Unbangluang W, Entchev E (2012) Impact of PHEVs penetration on Ontario’s electricity grid and environmental considerations. Energies 5(12):5019–5037. https://doi.org/10.3390/en5125019
[+]
Adnan, N., Nordin S. M., Rahman I., Amini M. H. (2017) A market modeling review study on predicting Malaysian consumer behavior towards widespread adoption of PHEV/EV, Environmental Science and Pollution Research. Springer Verlag, 24(22), pp. 17955–17975. doi: https://doi.org/10.1007/s11356-017-9153-8
AECC. (2018). Available at: http://www.aedecc.com/enlaces-de-interes/informacion-estadistica/ ()
Ahmadi L, Croiset E, Elkamel A, Douglas P, Unbangluang W, Entchev E (2012) Impact of PHEVs penetration on Ontario’s electricity grid and environmental considerations. Energies 5(12):5019–5037. https://doi.org/10.3390/en5125019
Akitt, J. W. (2018) Some observations on the greenhouse effect at the Earth’s surface, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. Elsevier, 188, pp. 127–134. doi: https://doi.org/10.1016/J.SAA.2017.06.051
Al-Alawi BM, Bradley TH (2013) Review of hybrid, plug-in hybrid, and electric vehicle market modeling studies. Renew Sust Energ Rev 21:190–203. https://doi.org/10.1016/j.rser.2012.12.048
Alhazmi YA, Mostafa HA, Salama MMA (2017) Optimal allocation for electric vehicle charging stations using trip success ratio. Int J Electr Power Energy Syst 91:101–116. https://doi.org/10.1016/j.ijepes.2017.03.009
Bagher Sadati, S. M., Moshtagh J., Shafie-khah M., Rastgou A., Catalão J. P.S. (2019) Operational scheduling of a smart distribution system considering electric vehicles parking lot: a bi-level approach, International Journal of Electrical Power & Energy Systems. Elsevier, 105, pp. 159–178. doi: https://doi.org/10.1016/J.IJEPES.2018.08.021
Baran, R. and Legey, L. F. L. (2013) The introduction of electric vehicles in Brazil: impacts on oil and electricity consumption, Technological Forecasting and Social Change. North-Holland, 80(5), pp. 907–917. doi: https://doi.org/10.1016/J.TECHFORE.2012.10.024
Bjerkan, K. Y., Nørbech, T. E. and Nordtømme, M. E. (2016) Incentives for promoting battery electric vehicle (BEV) adoption in Norway, Transportation Research Part D: Transport and Environment. Pergamon, 43, pp. 169–180. doi: https://doi.org/10.1016/J.TRD.2015.12.002
Canals Casals, L., Martinez-Laserna E., Amante García B., Nieto N. (2016) Sustainability analysis of the electric vehicle use in Europe for CO2 emissions reduction, Journal of Cleaner Production. Elsevier, 127, pp. 425–437. doi: https://doi.org/10.1016/J.JCLEPRO.2016.03.120
Ceballos Delgado, J. E., Caicedo Bravo, E. and Ospina Arango, S. (2016) A methodological proposal to measure the impact of electric vehicles on the electric grid, Ingeniería. Universidad Distrital Francisco José de Caldas, 21(2), pp. 154–175. doi: https://doi.org/10.14483/udistrital.jour.reving.2016.2.a03
Clairand J-M, Rodríguez-García J, Álvarez-Bel C (2018) Electric vehicle charging strategy for isolated systems with high penetration of renewable generation. Energies 11(11):3188. https://doi.org/10.3390/en11113188
Dang, Q. (2018) Electric vehicle (EV) charging management and relieve impacts in grids, 9th IEEE International Symposium on Power Electronics for Distributed Generation Systems. doi: https://doi.org/10.1109/PEDG.2018.8447802
Dang, Q. and Huo, Y. (2018) Modeling EV fleet load in distribution grids: a data-driven approach, in 2018 IEEE Transportation Electrification Conference and Expo (ITEC). IEEE, pp 720–724. doi: https://doi.org/10.1109/ITEC.2018.8450195
Danté, A. W., Agbossou K., Kelouwani S., Cardenas A., Bouchard J. (2019) Online modeling and identification of plug-in electric vehicles sharing a residential station, International Journal of Electrical Power & Energy Systems. Elsevier, 108, pp. 162–176. doi: https://doi.org/10.1016/J.IJEPES.2018.12.024
Deb S et al (2018) Impact of electric vehicle charging station load on distribution network. Energies 11(1):178. https://doi.org/10.3390/en11010178
Desai RR, Chen RB, Armington W (2018) A pattern analysis of daily electric vehicle charging profiles: operational efficiency and environmental impacts. J Adv Transp 2018:1–15. https://doi.org/10.1155/2018/6930932
DGT (2017) Vehicle fleet historical data base. Available at: http://www.dgt.es/es/seguridad-vial/estadisticas-e-indicadores/parque-vehiculos/series-historicas/ ()
DGT (2019) Traffic information. Available at: http://infocar.dgt.es/etraffic/ ()
Dijk, M., Orsato, R. J. and Kemp, R. (2013) The emergence of an electric mobility trajectory, Energy Policy. Elsevier, 52, pp. 135–145. doi: https://doi.org/10.1016/J.ENPOL.2012.04.024
Eurostat (2018) Database - Eurostat. Available at: https://ec.europa.eu/eurostat/web/lfs/data/database (Accessed: 2 August 2019)
Galiveeti, H. R., Goswami, A. K. and Dev Choudhury, N. B. (2018) Impact of plug-in electric vehicles and distributed generation on reliability of distribution systems, Engineering Science and Technology, an International Journal. Elsevier, 21(1), pp. 50–59. doi: https://doi.org/10.1016/J.JESTCH.2018.01.005
Gong L et al (2018) Spatial and temporal optimization strategy for plug-in electric vehicle charging to mitigate impacts on distribution network. Energies 11(6):1373. https://doi.org/10.3390/en11061373
Hasan, M. A., Frame D. J., Chapman R., Archie K. M. (2019) Emissions from the road transport sector of New Zealand: key drivers and challenges, Environmental Science and Pollution Research. Springer Verlag, 26(23), pp. 23937–23957. doi: https://doi.org/10.1007/s11356-019-05734-6
IDAE (2012) Technological electric mobility map. Available at: http://www.idae.es/uploads/documentos/documentos_Movilidad_Electrica_ACC_c603f868.pdf (Accessed: 7 January 2019)
INE (2018) Average distance covered by vehicles fleet. Available at: http://www.ine.es/jaxi/Tabla.htm?path=/t25/p500/2008/p10/l0/&file=10020.px&L=0 (Accessed: 30 December 2018)
Limmer, S. and Rodemann, T. (2019) Peak load reduction through dynamic pricing for electric vehicle charging, International Journal of Electrical Power & Energy Systems. Elsevier, 113, pp. 117–128. doi: https://doi.org/10.1016/J.IJEPES.2019.05.031
Liu Z, Wu Q, Nielsen A, Wang Y (2014) Day-ahead energy planning with 100% electric vehicle penetration in the Nordic Region by 2050. Energies 7(3):1733–1749. https://doi.org/10.3390/en7031733
López, M. A., de la Torre S., Martín S., Aguado J.A. (2015) Demand-side management in smart grid operation considering electric vehicles load shifting and vehicle-to-grid support, International Journal of Electrical Power & Energy Systems. Elsevier, 64, pp. 689–698. doi: https://doi.org/10.1016/J.IJEPES.2014.07.065
Luca de Tena D, Pregger T (2018) Impact of electric vehicles on a future renewable energy-based power system in Europe with a focus on Germany. Int J Energy Res 42(8):2670–2685. https://doi.org/10.1002/er.4056
Mao, D., Gao, Z. and Wang, J. (2019) An integrated algorithm for evaluating plug-in electric vehicle’s impact on the state of power grid assets, International Journal of Electrical Power & Energy Systems. Elsevier, 105, pp. 793–802. doi: https://doi.org/10.1016/J.IJEPES.2018.09.028
Martínez-Lao, J. et al. (2017) Electric vehicles in Spain: an overview of charging systems, Renewable and Sustainable Energy Reviews. Pergamon. doi: https://doi.org/10.1016/J.RSER.2016.11.239.
Morrissey, P., Weldon, P. and O’Mahony, M. (2016) Future standard and fast charging infrastructure planning: an analysis of electric vehicle charging behaviour, Energy Policy. Elsevier, 89, pp. 257–270. doi: https://doi.org/10.1016/J.ENPOL.2015.12.001
Ortega-Vazquez MA, Bouffard F, Silva V (2013) Electric vehicle aggregator/system operator coordination for charging scheduling and services procurement. IEEE Trans Power Syst 28(2):1806–1815. https://doi.org/10.1109/TPWRS.2012.2221750
PNIEC (2019) Spanish climate change draft law. Available at: https://www.miteco.gob.es/es/prensa/ultimas-noticias/el-consejo-de-ministros-da-luz-verde-al-anteproyecto-de-ley-de-cambio-climático-/tcm:30-487294 ()
REE (2017a) Electrical demand, energy generation structure and CO2 emissions. Available at: https://demanda.ree.es/visiona/peninsula/demanda/total/2018-10-16 ()
REE (2017b) Historical data base. Available at: https://www.ree.es/es/estadisticas-del-sistema-electrico-espanol/series-estadisticas/series-estadisticas-nacionales ()
REE (2018) Electric mobility guide for local entities. Available at: https://www.ree.es/sites/default/files/downloadable/Guia_movilidad_electrica_para_entidades_locales.pdf (Accessed: 31 July 2019)
Su, J., Lie, T. T. and Zamora, R. (2019) Modelling of large-scale electric vehicles charging demand: a New Zealand case study, Electric Power Systems Research. Elsevier, 167, pp. 171–182. doi: https://doi.org/10.1016/J.EPSR.2018.10.030
Sundstrom O, Binding C (2012) Flexible charging optimization for electric vehicles considering distribution grid constraints. IEEE Transactions on Smart Grid 3(1):26–37. https://doi.org/10.1109/TSG.2011.2168431
Teixeira ACR, Sodré JR (2018) Impacts of replacement of engine powered vehicles by electric vehicles on energy consumption and CO2 emissions. Transportation Research Part D: Transport and Environment. Pergamon 59:375–384. https://doi.org/10.1016/J.TRD.2018.01.004
Tietge, U., Díaz, S., et al. (2016a) From laboratory to road: a 2016 update of official and “real-world” fuel consumption and CO2 values for passenger cars in Europe, The International Council on Clean Transportation. Available at: https://theicct.org/publications/laboratory-road-2016-update
Tietge, U., Mock, P., et al. (2016b) Real-world fuel consumption of popular European passenger car models | International Council on Clean Transportation, The International Council on Clean Transportation. Available at: https://www.theicct.org/publications/real-world-fuel-consumption-popular-european-passenger-car-models
Valsera-Naranjo E, Sumper A, Villafafila-Robles R, Martínez-Vicente D (2012) Probabilistic method to assess the impact of charging of electric vehicles on distribution grids. Energies. Molecular Diversity Preservation International 5(5):1503–1531. https://doi.org/10.3390/en5051503
Wang, L. and Chen, B. (2019) Distributed control for large-scale plug-in electric vehicle charging with a consensus algorithm, International Journal of Electrical Power & Energy Systems. Elsevier, 109, pp. 369–383. doi: https://doi.org/10.1016/J.IJEPES.2019.02.020
Wang Y, Infield D (2018) Markov chain Monte Carlo simulation of electric vehicle use for network integration studies. International Journal of Electrical Power & Energy Systems. Elsevier 99:85–94. https://doi.org/10.1016/J.IJEPES.2018.01.008
Wang X, Wei X, Dai H (2019) Estimation of state of health of lithium-ion batteries based on charge transfer resistance considering different temperature and state of charge. Journal of Energy Storage. Elsevier Ltd 21:618–631. https://doi.org/10.1016/j.est.2018.11.020
Zhang, K. et al. (2019) Parameter identification and state of charge estimation of NMC cells based on improved ant lion optimizer, Mathematical Problems in Engineering, pp. 1–18. doi: https://doi.org/10.1155/2019/4961045
Zhao X, Ma J, Wang S, Ye Y, Wu Y, Yu M (2018a) Developing an electric vehicle urban driving cycle to study differences in energy consumption. Environmental Science and Pollution Research. Springer Verlag 26(14):13839–13853. https://doi.org/10.1007/s11356-018-3541-6
Zhao, X., Yu, Q., et al. (2018b) Development of a representative EV urban driving cycle based on a k-means and SVM hybrid clustering algorithm, Journal of Advanced Transportation, pp. 1–18. doi: https://doi.org/10.1155/2018/1890753
[-]