- -

Light electric vehicle charging strategy for low impact on the grid

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Light electric vehicle charging strategy for low impact on the grid

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bastida-Molina, Paula es_ES
dc.contributor.author Hurtado-Perez, Elias es_ES
dc.contributor.author Pérez Navarro, Ángel es_ES
dc.contributor.author Alfonso-Solar, David es_ES
dc.date.accessioned 2021-07-01T03:32:33Z
dc.date.available 2021-07-01T03:32:33Z
dc.date.issued 2021-04 es_ES
dc.identifier.issn 0944-1344 es_ES
dc.identifier.uri http://hdl.handle.net/10251/168605
dc.description.abstract [EN] The alarming increase in the average temperature of the planet due to the massive emission of greenhouse gases has stimulated the introduction of electric vehicles (EV), given transport sector is responsible for more than 25% of the total global CO2 emissions. EV penetration will substantially increase electricity demand and, therefore, an optimization of the EV recharging scenario is needed to make full use of the existing electricity generation system without upgrading requirements. In this paper, a methodology based on the use of the temporal valleys in the daily electricity demand is developed for EVrecharge, avoiding the peak demand hours to minimize the impact on the grid. The methodology assumes three different strategies for the recharge activities: home, public buildings, and electrical stations. It has been applied to the case of Spain in the year 2030, assuming three different scenarios for the growth of the total fleet: low, medium, and high. For each of them, three different levels for the EV penetration by the year 2030 are considered: 25%, 50%, and 75%, respectively. Only light electric vehicles (LEV), cars and motorcycles, are taken into account given the fact that batteries are not yet able to provide the full autonomy desired by heavy vehicles. Moreover, heavy vehicles have different travel uses that should be separately considered. Results for the fraction of the total recharge to be made in each of the different recharge modes are deduced with indication of the time intervals to be used in each of them. For the higher penetration scenario, 75% of the total park, an almost flat electricity demand curve is obtained. Studies are made for working days and for non-working days. es_ES
dc.description.sponsorship One of the authors was supported by the Generalitat Valenciana under the grant ACIF/2018/106. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Environmental Science and Pollution Research es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Electric vehicle es_ES
dc.subject Recharging strategy es_ES
dc.subject Schedule optimization es_ES
dc.subject Demand curve es_ES
dc.subject Temporal valleys es_ES
dc.subject Peak loads es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.subject.classification INGENIERIA ELECTRICA es_ES
dc.title Light electric vehicle charging strategy for low impact on the grid es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11356-020-08901-2 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACIF%2F2018%2F106/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Ingeniería Energética - Institut d'Enginyeria Energètica es_ES
dc.description.bibliographicCitation Bastida-Molina, P.; Hurtado-Perez, E.; Pérez Navarro, Á.; Alfonso-Solar, D. (2021). Light electric vehicle charging strategy for low impact on the grid. Environmental Science and Pollution Research. 28(15):18790-18806. https://doi.org/10.1007/s11356-020-08901-2 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11356-020-08901-2 es_ES
dc.description.upvformatpinicio 18790 es_ES
dc.description.upvformatpfin 18806 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 28 es_ES
dc.description.issue 15 es_ES
dc.identifier.pmid 32333351 es_ES
dc.relation.pasarela S\409061 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.description.references Adnan, N., Nordin S. M., Rahman I., Amini M. H. (2017) A market modeling review study on predicting Malaysian consumer behavior towards widespread adoption of PHEV/EV, Environmental Science and Pollution Research. Springer Verlag, 24(22), pp. 17955–17975. doi: https://doi.org/10.1007/s11356-017-9153-8 es_ES
dc.description.references AECC. (2018). Available at: http://www.aedecc.com/enlaces-de-interes/informacion-estadistica/ () es_ES
dc.description.references Ahmadi L, Croiset E, Elkamel A, Douglas P, Unbangluang W, Entchev E (2012) Impact of PHEVs penetration on Ontario’s electricity grid and environmental considerations. Energies 5(12):5019–5037. https://doi.org/10.3390/en5125019 es_ES
dc.description.references Akitt, J. W. (2018) Some observations on the greenhouse effect at the Earth’s surface, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. Elsevier, 188, pp. 127–134. doi: https://doi.org/10.1016/J.SAA.2017.06.051 es_ES
dc.description.references Al-Alawi BM, Bradley TH (2013) Review of hybrid, plug-in hybrid, and electric vehicle market modeling studies. Renew Sust Energ Rev 21:190–203. https://doi.org/10.1016/j.rser.2012.12.048 es_ES
dc.description.references Alhazmi YA, Mostafa HA, Salama MMA (2017) Optimal allocation for electric vehicle charging stations using trip success ratio. Int J Electr Power Energy Syst 91:101–116. https://doi.org/10.1016/j.ijepes.2017.03.009 es_ES
dc.description.references Bagher Sadati, S. M., Moshtagh J., Shafie-khah M., Rastgou A., Catalão J. P.S. (2019) Operational scheduling of a smart distribution system considering electric vehicles parking lot: a bi-level approach, International Journal of Electrical Power & Energy Systems. Elsevier, 105, pp. 159–178. doi: https://doi.org/10.1016/J.IJEPES.2018.08.021 es_ES
dc.description.references Baran, R. and Legey, L. F. L. (2013) The introduction of electric vehicles in Brazil: impacts on oil and electricity consumption, Technological Forecasting and Social Change. North-Holland, 80(5), pp. 907–917. doi: https://doi.org/10.1016/J.TECHFORE.2012.10.024 es_ES
dc.description.references Bjerkan, K. Y., Nørbech, T. E. and Nordtømme, M. E. (2016) Incentives for promoting battery electric vehicle (BEV) adoption in Norway, Transportation Research Part D: Transport and Environment. Pergamon, 43, pp. 169–180. doi: https://doi.org/10.1016/J.TRD.2015.12.002 es_ES
dc.description.references Canals Casals, L., Martinez-Laserna E., Amante García B., Nieto N. (2016) Sustainability analysis of the electric vehicle use in Europe for CO2 emissions reduction, Journal of Cleaner Production. Elsevier, 127, pp. 425–437. doi: https://doi.org/10.1016/J.JCLEPRO.2016.03.120 es_ES
dc.description.references Ceballos Delgado, J. E., Caicedo Bravo, E. and Ospina Arango, S. (2016) A methodological proposal to measure the impact of electric vehicles on the electric grid, Ingeniería. Universidad Distrital Francisco José de Caldas, 21(2), pp. 154–175. doi: https://doi.org/10.14483/udistrital.jour.reving.2016.2.a03 es_ES
dc.description.references Clairand J-M, Rodríguez-García J, Álvarez-Bel C (2018) Electric vehicle charging strategy for isolated systems with high penetration of renewable generation. Energies 11(11):3188. https://doi.org/10.3390/en11113188 es_ES
dc.description.references Dang, Q. (2018) Electric vehicle (EV) charging management and relieve impacts in grids, 9th IEEE International Symposium on Power Electronics for Distributed Generation Systems. doi: https://doi.org/10.1109/PEDG.2018.8447802 es_ES
dc.description.references Dang, Q. and Huo, Y. (2018) Modeling EV fleet load in distribution grids: a data-driven approach, in 2018 IEEE Transportation Electrification Conference and Expo (ITEC). IEEE, pp 720–724. doi: https://doi.org/10.1109/ITEC.2018.8450195 es_ES
dc.description.references Danté, A. W., Agbossou K., Kelouwani S., Cardenas A., Bouchard J. (2019) Online modeling and identification of plug-in electric vehicles sharing a residential station, International Journal of Electrical Power & Energy Systems. Elsevier, 108, pp. 162–176. doi: https://doi.org/10.1016/J.IJEPES.2018.12.024 es_ES
dc.description.references Deb S et al (2018) Impact of electric vehicle charging station load on distribution network. Energies 11(1):178. https://doi.org/10.3390/en11010178 es_ES
dc.description.references Desai RR, Chen RB, Armington W (2018) A pattern analysis of daily electric vehicle charging profiles: operational efficiency and environmental impacts. J Adv Transp 2018:1–15. https://doi.org/10.1155/2018/6930932 es_ES
dc.description.references DGT (2017) Vehicle fleet historical data base. Available at: http://www.dgt.es/es/seguridad-vial/estadisticas-e-indicadores/parque-vehiculos/series-historicas/ () es_ES
dc.description.references DGT (2019) Traffic information. Available at: http://infocar.dgt.es/etraffic/ () es_ES
dc.description.references Dijk, M., Orsato, R. J. and Kemp, R. (2013) The emergence of an electric mobility trajectory, Energy Policy. Elsevier, 52, pp. 135–145. doi: https://doi.org/10.1016/J.ENPOL.2012.04.024 es_ES
dc.description.references Eurostat (2018) Database - Eurostat. Available at: https://ec.europa.eu/eurostat/web/lfs/data/database (Accessed: 2 August 2019) es_ES
dc.description.references Galiveeti, H. R., Goswami, A. K. and Dev Choudhury, N. B. (2018) Impact of plug-in electric vehicles and distributed generation on reliability of distribution systems, Engineering Science and Technology, an International Journal. Elsevier, 21(1), pp. 50–59. doi: https://doi.org/10.1016/J.JESTCH.2018.01.005 es_ES
dc.description.references Gong L et al (2018) Spatial and temporal optimization strategy for plug-in electric vehicle charging to mitigate impacts on distribution network. Energies 11(6):1373. https://doi.org/10.3390/en11061373 es_ES
dc.description.references Hasan, M. A., Frame D. J., Chapman R., Archie K. M. (2019) Emissions from the road transport sector of New Zealand: key drivers and challenges, Environmental Science and Pollution Research. Springer Verlag, 26(23), pp. 23937–23957. doi: https://doi.org/10.1007/s11356-019-05734-6 es_ES
dc.description.references IDAE (2012) Technological electric mobility map. Available at: http://www.idae.es/uploads/documentos/documentos_Movilidad_Electrica_ACC_c603f868.pdf (Accessed: 7 January 2019) es_ES
dc.description.references INE (2018) Average distance covered by vehicles fleet. Available at: http://www.ine.es/jaxi/Tabla.htm?path=/t25/p500/2008/p10/l0/&file=10020.px&L=0 (Accessed: 30 December 2018) es_ES
dc.description.references Limmer, S. and Rodemann, T. (2019) Peak load reduction through dynamic pricing for electric vehicle charging, International Journal of Electrical Power & Energy Systems. Elsevier, 113, pp. 117–128. doi: https://doi.org/10.1016/J.IJEPES.2019.05.031 es_ES
dc.description.references Liu Z, Wu Q, Nielsen A, Wang Y (2014) Day-ahead energy planning with 100% electric vehicle penetration in the Nordic Region by 2050. Energies 7(3):1733–1749. https://doi.org/10.3390/en7031733 es_ES
dc.description.references López, M. A., de la Torre S., Martín S., Aguado J.A. (2015) Demand-side management in smart grid operation considering electric vehicles load shifting and vehicle-to-grid support, International Journal of Electrical Power & Energy Systems. Elsevier, 64, pp. 689–698. doi: https://doi.org/10.1016/J.IJEPES.2014.07.065 es_ES
dc.description.references Luca de Tena D, Pregger T (2018) Impact of electric vehicles on a future renewable energy-based power system in Europe with a focus on Germany. Int J Energy Res 42(8):2670–2685. https://doi.org/10.1002/er.4056 es_ES
dc.description.references Mao, D., Gao, Z. and Wang, J. (2019) An integrated algorithm for evaluating plug-in electric vehicle’s impact on the state of power grid assets, International Journal of Electrical Power & Energy Systems. Elsevier, 105, pp. 793–802. doi: https://doi.org/10.1016/J.IJEPES.2018.09.028 es_ES
dc.description.references Martínez-Lao, J. et al. (2017) Electric vehicles in Spain: an overview of charging systems, Renewable and Sustainable Energy Reviews. Pergamon. doi: https://doi.org/10.1016/J.RSER.2016.11.239. es_ES
dc.description.references Morrissey, P., Weldon, P. and O’Mahony, M. (2016) Future standard and fast charging infrastructure planning: an analysis of electric vehicle charging behaviour, Energy Policy. Elsevier, 89, pp. 257–270. doi: https://doi.org/10.1016/J.ENPOL.2015.12.001 es_ES
dc.description.references Ortega-Vazquez MA, Bouffard F, Silva V (2013) Electric vehicle aggregator/system operator coordination for charging scheduling and services procurement. IEEE Trans Power Syst 28(2):1806–1815. https://doi.org/10.1109/TPWRS.2012.2221750 es_ES
dc.description.references PNIEC (2019) Spanish climate change draft law. Available at: https://www.miteco.gob.es/es/prensa/ultimas-noticias/el-consejo-de-ministros-da-luz-verde-al-anteproyecto-de-ley-de-cambio-climático-/tcm:30-487294 () es_ES
dc.description.references REE (2017a) Electrical demand, energy generation structure and CO2 emissions. Available at: https://demanda.ree.es/visiona/peninsula/demanda/total/2018-10-16 () es_ES
dc.description.references REE (2017b) Historical data base. Available at: https://www.ree.es/es/estadisticas-del-sistema-electrico-espanol/series-estadisticas/series-estadisticas-nacionales () es_ES
dc.description.references REE (2018) Electric mobility guide for local entities. Available at: https://www.ree.es/sites/default/files/downloadable/Guia_movilidad_electrica_para_entidades_locales.pdf (Accessed: 31 July 2019) es_ES
dc.description.references Su, J., Lie, T. T. and Zamora, R. (2019) Modelling of large-scale electric vehicles charging demand: a New Zealand case study, Electric Power Systems Research. Elsevier, 167, pp. 171–182. doi: https://doi.org/10.1016/J.EPSR.2018.10.030 es_ES
dc.description.references Sundstrom O, Binding C (2012) Flexible charging optimization for electric vehicles considering distribution grid constraints. IEEE Transactions on Smart Grid 3(1):26–37. https://doi.org/10.1109/TSG.2011.2168431 es_ES
dc.description.references Teixeira ACR, Sodré JR (2018) Impacts of replacement of engine powered vehicles by electric vehicles on energy consumption and CO2 emissions. Transportation Research Part D: Transport and Environment. Pergamon 59:375–384. https://doi.org/10.1016/J.TRD.2018.01.004 es_ES
dc.description.references Tietge, U., Díaz, S., et al. (2016a) From laboratory to road: a 2016 update of official and “real-world” fuel consumption and CO2 values for passenger cars in Europe, The International Council on Clean Transportation. Available at: https://theicct.org/publications/laboratory-road-2016-update es_ES
dc.description.references Tietge, U., Mock, P., et al. (2016b) Real-world fuel consumption of popular European passenger car models | International Council on Clean Transportation, The International Council on Clean Transportation. Available at: https://www.theicct.org/publications/real-world-fuel-consumption-popular-european-passenger-car-models es_ES
dc.description.references Valsera-Naranjo E, Sumper A, Villafafila-Robles R, Martínez-Vicente D (2012) Probabilistic method to assess the impact of charging of electric vehicles on distribution grids. Energies. Molecular Diversity Preservation International 5(5):1503–1531. https://doi.org/10.3390/en5051503 es_ES
dc.description.references Wang, L. and Chen, B. (2019) Distributed control for large-scale plug-in electric vehicle charging with a consensus algorithm, International Journal of Electrical Power & Energy Systems. Elsevier, 109, pp. 369–383. doi: https://doi.org/10.1016/J.IJEPES.2019.02.020 es_ES
dc.description.references Wang Y, Infield D (2018) Markov chain Monte Carlo simulation of electric vehicle use for network integration studies. International Journal of Electrical Power & Energy Systems. Elsevier 99:85–94. https://doi.org/10.1016/J.IJEPES.2018.01.008 es_ES
dc.description.references Wang X, Wei X, Dai H (2019) Estimation of state of health of lithium-ion batteries based on charge transfer resistance considering different temperature and state of charge. Journal of Energy Storage. Elsevier Ltd 21:618–631. https://doi.org/10.1016/j.est.2018.11.020 es_ES
dc.description.references Zhang, K. et al. (2019) Parameter identification and state of charge estimation of NMC cells based on improved ant lion optimizer, Mathematical Problems in Engineering, pp. 1–18. doi: https://doi.org/10.1155/2019/4961045 es_ES
dc.description.references Zhao X, Ma J, Wang S, Ye Y, Wu Y, Yu M (2018a) Developing an electric vehicle urban driving cycle to study differences in energy consumption. Environmental Science and Pollution Research. Springer Verlag 26(14):13839–13853. https://doi.org/10.1007/s11356-018-3541-6 es_ES
dc.description.references Zhao, X., Yu, Q., et al. (2018b) Development of a representative EV urban driving cycle based on a k-means and SVM hybrid clustering algorithm, Journal of Advanced Transportation, pp. 1–18. doi: https://doi.org/10.1155/2018/1890753 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem