- -

Exploiting the diversity of tomato: the development of a phenotypically and genetically detailed germplasm collection

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Exploiting the diversity of tomato: the development of a phenotypically and genetically detailed germplasm collection

Mostrar el registro completo del ítem

Mata-Nicolás, E.; Montero-Pau, J.; Gimeno -Paez, E.; García-Carpintero, V.; Ziarsolo, P.; Menda, N.; Mueller, LA.... (2020). Exploiting the diversity of tomato: the development of a phenotypically and genetically detailed germplasm collection. Horticulture Research. 7(1):1-14. https://doi.org/10.1038/s41438-020-0291-7

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/168608

Ficheros en el ítem

Metadatos del ítem

Título: Exploiting the diversity of tomato: the development of a phenotypically and genetically detailed germplasm collection
Autor: Mata-Nicolás, Estefanía Montero-Pau, Javier Gimeno -Paez, Esther García-Carpintero, Víctor Ziarsolo, Peio Menda, Naama Mueller, Lukas A. Blanca Postigo, José Miguel Cañizares Sales, Joaquín van der Knaap, Esther Díez, María José
Entidad UPV: Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana
Fecha difusión:
Resumen:
[EN] A collection of 163 accessions, including Solanum pimpinellifolium, Solanum lycopersicum var. cerasiforme and Solanum lycopersicum var. lycopersicum, was selected to represent the genetic and morphological variability ...[+]
Derechos de uso: Reconocimiento (by)
Fuente:
Horticulture Research. (eissn: 2052-7276 )
DOI: 10.1038/s41438-020-0291-7
Editorial:
Springer Nature
Versión del editor: https://doi.org/10.1038/s41438-020-0291-7
Código del Proyecto:
info:eu-repo/grantAgreement/NSF//1564366/US/Exploitation of Genetic and Epigenetic Variation in the Regulation of Tomato Fruit Quality Traits/
Agradecimientos:
This research was supported by the National Natural Science Foundation of USA Varitome project (NSF IOS 1564366). We would like to thank the Centro de Experiencias Cajamar de Paiporta (Valencia, Spain) for its excellent ...[+]
Tipo: Artículo

References

Rick, C. M. & Fobes, J. F. Allozyme variation in the cultivated tomato and closely related species. Bull. Torre Bot. Club 102, 376–384 (1975).

Blanca, J. Variation revealed by SNP genotyping and morphology provides insight into the origin of the tomato. PLoS ONE 7, e48198, https://doi.org/10.1371/journal.pone.0048198 (2012).

Blanca, J. et al. Genomic variation in tomato, from wild ancestors to contemporary breeding accessions. BMC Genomics. https://doi.org/10.1186/s12864-015-1444-1 (2015). [+]
Rick, C. M. & Fobes, J. F. Allozyme variation in the cultivated tomato and closely related species. Bull. Torre Bot. Club 102, 376–384 (1975).

Blanca, J. Variation revealed by SNP genotyping and morphology provides insight into the origin of the tomato. PLoS ONE 7, e48198, https://doi.org/10.1371/journal.pone.0048198 (2012).

Blanca, J. et al. Genomic variation in tomato, from wild ancestors to contemporary breeding accessions. BMC Genomics. https://doi.org/10.1186/s12864-015-1444-1 (2015).

Razifard, H. et al. Genomic evidence for complex domestication history of the cultivated tomato in Latin America. Mol. Biol. Evol. https://doi.org/10.1093/molbev/msz297 (2020).

Bai, Y. & Lindhout, P. Domestication and breeding of tomatoes: what have we gained and what can we gain in the future? https://doi.org/10.1093/aob/mcm150 (2007).

Peralta, I. E., Spooner, D. M. & Knapp, S. Taxonomy of wild tomatoes and their relatives (Solanum sect. Lycopersicoides, sect. Juglandifolia, sect. Lycopersicon; Solanaceae). Syst. Bot. Monogr. 84, 1–186 (2008).

Ichihashi, Y. & Sinha, N. R. From genome to phenome and back in tomato. Curr. Opin. Plant Biol. 18, 9–15 (2014).

Monforte, A. J., Diaz, A., Caño-Delgado, A. & Van Der Knaap, E. The genetic basis of fruit morphology in horticultural crops: lessons from tomato and melon. J. Exp. Bot. 65, 4625–4637 (2014).

Rodríguez, G. R. et al. Distribution of SUN, OVATE, LC, and FAS in the tomato germplasm and the relationship to fruit shape diversity. Plant Physiol. 156, 275–285 (2011).

Paran, I. & Van Der Knaap, E. Genetic and molecular regulation of fruit and plant domestication traits in tomato and pepper. J. Exp. Bot. 58, 3841–3852 (2007).

García-Martínez, S., Andreani, L., Garcia-Gusano, M., Geuna, F. & Ruiz, J. J. Evaluation of amplified fragment length polymorphism and simple sequence repeats for tomato germplasm fingerprinting: utility for grouping closely related traditional cultivars. Genome 49, 648–656 (2006).

Rick, C. M., Fobes, J. F. & Holle, M. Genetic Variation in Lycopersicon pimpinellifolium: evidence of evolutionary change in mating systems*. Plant Syst. Evol. 127, 139–170 (1977).

Caicedo, A. L. & Schaal, B. A. Population structure and phylogeography of Solanum pimpinellifolium inferred from a nuclear gene. Mol. Ecol. 13, 1871–1882 (2004).

Sifres, A., Picó, B., Blanca, J. M., De Frutos, R. & Nuez, F. Genetic structure of Lycopersicon pimpinellifolium (Solanaceae) populations collected after the ENSO event of 1997-1998. Genet. Resour. Crop Evol. 54, 359–377 (2007).

Zuriaga, E. et al. Genetic and bioclimatic variation in Solanum pimpinellifolium. Genet. Resour. Crop Evol. 56, 39–51 (2009).

Ricks, C. M. Potential improvement of tomatoes by controlled introgression of genes from wild species. in Proc. Conference Broadening the Genetic Base of Crops 167–176 (1978).

Stevens, M. A. & Ricks, C. M. Genetics and breeding. in The Tomato Crop: A Scientific Basis for Improvement (eds Atherton, J. & Rudich, J.) 661 (Chapman and Hall Ltd., 1986). https://doi.org/10.1007/978-94-009-3137-4.

Capel, C. et al. Wide-genome QTL mapping of fruit quality traits in a tomato RIL population derived from the wild-relative species Solanum pimpinellifolium L. Theor. Appl. Genet. 128, 2019–2035 (2015).

Rambla, J. L. et al. Identification, introgression, and validation of fruit volatile QTLs from a red-fruited wild tomato species. J. Exp. Bot. 68, 429–442 (2017).

Banerjee, M. K. & Kalloo, M. K. Sources and inheritance of resistance to leaf curl virus in Lycopersicon. Theor. Appl. Genet. 73, 707–710 (1987).

Alexander, L. & Hoover, M. Disease resistance in wild species of tomato: Report of the national screening Committee. Agric. Exp. Stn. Res. Bull. 752, 1–76 (1955).

Walter, J. M. Hereditary resistance to disease in tomato. Annu. Rev. Phytopathol. 5, 131–160 (1967).

Warnock, S. J. Natural habitats of Lycopersicon Species. HortScience 26, 466–471 (1991).

Rick, C. M. The role of natural hybridization in the derivation of cultivated tomatoes of western South America. Econ. Bot. 12, 346–367 (1958).

Rick, C. M. & Holle, M. Andean Lycopersicon esculentum var. cerasiforme: genetic variation and its evolutionary significance. Econ. Bot. 44, 69–78 (1990).

Nuez, F. & Díez, M. J. Tomato. in Vegetables II. Handbook of Plant Breeding (eds Prohens, J. & Nuez, F.) 249–323 (Springer, 2008). https://doi.org/10.1007/978-0-387-74110-9_7.

Arellano Rodríguez, L. J. et al. Evaluation of the resistance against Phytophthora infestans of wild populations of Solanum lycopersicum var. cerasiforme. Rev. Mex. Cienc. Agr. 4, 753–766 (2013).

Foolad, M. R. Genome mapping and molecular breeding of tomato. Int. J. Plant Genomics 2007, 64358, https://doi.org/10.1155/2007/64358 (2007).

Robertson, L. & Labate, J. Genetic Improvement of Solanaceous Crops Volume 2: Tomato. (Science Publishers, 2014).

Rothan, C., Diouf, I. & Causse, M. Trait discovery and editing in tomato. Plant J. 97, 73–90 (2019).

Bauchet, G. et al. Use of modern tomato breeding germplasm for deciphering the genetic control of agronomical traits by Genome Wide Association study. Theor. Appl. Genet. 130, 875–889 (2017).

Tieman, D. et al. A chemical genetic roadmap to improved tomato flavor. Science 355, 391–394 (2017).

Bauchet, G. et al. Identification of major loci and genomic regions controlling acid and volatile content in tomato fruit: implications for flavor improvement. N. Phytol. 215, 624–641 (2017).

Zhao, J. et al. Meta-analysis of genome-wide association studies provides insights into genetic control of tomato flavor. Nat. Commun. 10, 1–12 (2019).

Aflitos, S. et al. Exploring genetic variation in the tomato (Solanum section Lycopersicon) clade by whole-genome sequencing. Plant J. 80, 136–148 (2014).

Lin, T. et al. Genomic analyses provide insights into the history of tomato breeding. Nat. Genet. 46, 1220–1226 (2014).

Gao, L. et al. The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor. Nat. Genet. 51, 1044–1051 (2019).

Soyk, S. et al. Bypassing negative epistasis on yield in tomato imposed by a domestication gene. Cell 169, 1142–1155 (2017).

Zhu, G. et al. Rewiring of the fruit metabolome in tomato breeding. Cell 172, 249–261 (2018).

Widrlechner, M. P. Variation in breeding system of lycopersicon pimpinellifolium: implications for germplasm maintenance. Plant Genet. Resour. Newsl. 70, 38–43 (1987).

Williams, C. E., ST & Clair, D. A. Phenetic relationships and levels of variability detected by restriction fragment length polymorphism and random amplified polymorphic DNA analysis of cultivated and wild accessions of Lycopersicon esculentum. Genome 36, 619–630 (1993).

Georgiady, M. S., Whitkus, R. W. & Lord, E. M. Genetic analysis of traits distinguishing outcrossing and self-pollinating forms of currant tomato, Lycopersicon pimpinellifolium (Jusl.) Mill. Genetics 161, 333–344 (2002).

Brasil, J. N. et al. AIP1 is a novel Agenet/Tudor domain protein from Arabidopsis that interacts with regulators of DNA replication, transcription and chromatin remodeling. BMC Plant Biol. 15, 270 (2015).

Holland, N. et al. A comparative analysis of the plant cellulose synthase (CesA) gene family. Plant Physiol. 123, 1313–1323 (2000).

Zhang, H., Xia, R., Meyers, B. C. & Walbot, V. Evolution, functions, and mysteries of plant ARGONAUTE proteins. Curr. Opin. Plant Biol. 27, 84–90 (2015).

Bai, M. et al. Genome-wide identification of Dicer-like, Argonaute and RNA-dependent RNA polymerase gene families and their expression analyses in response to viral infection and abiotic stresses in Solanum lycopersicum. Gene 501, 52–62 (2012).

Xu, C. et al. A cascade of arabinosyltransferases controls shoot meristem size in tomato. Nat. Genet. 47, 784–792 (2015).

Meskauskiene, R. et al. FLU: a negative regulator of chlorophyll biosynthesis in arabidopsis thaliana. Proc. Natl Acad. Sci. USA 98, 12826–12831 (2001).

Joazeiro, C. A. P. & Weissman, A. M. RING finger proteins: mediators of ubiquitin ligase activity. Cell 102, 549–552 (2000).

Frary, A. et al. fw2. 2: a quantitative trait locus key evolution tomato fruit size. Science 289, 85–88 (2000).

Grandillo, S., Ku, H. M. & Tanksley, S. D. Identifying the loci responsible for natural variation in fruit size and shape in tomato. Theor. Appl. Genet. 99, 978–987 (1999).

Sacco, A. Exploring a tomato landraces collection for fruit-related traits by the aid of a high-throughput genomic platform. PLoS ONE 10, e0137139, https://doi.org/10.1371/journal.pone.0137139 (2015).

Mu, Q. et al. Fruit weight is controlled by Cell Size Regulator encoding a novel protein that is expressed in maturing tomato fruits. PLoS Genet. 13, 1–26 (2017).

Yoo, H. J. et al. Inferring the genetic determinants of fruit colors in tomato by carotenoid profiling. Molecules 22, 1–14 (2017).

IPGRI. Descriptors for Tomato Lycopersicum spp. (International Plant Genetic Resources Institute, Rome, Italy, 1996).

Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6, 80–92 (2012).

Gogarten, S. M. et al. Genetic association testing using the GENESIS R/Bioconductor package. Bioinformatics https://doi.org/10.1093/bioinformatics/btz567 (2019).

Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

Li, M. X., Yeung, J. M. Y., Cherny, S. S. & Sham, P. C. Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets. Hum. Genet. 131, 747–756 (2012).

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem