- -

Exploiting the diversity of tomato: the development of a phenotypically and genetically detailed germplasm collection

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Exploiting the diversity of tomato: the development of a phenotypically and genetically detailed germplasm collection

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mata-Nicolás, Estefanía es_ES
dc.contributor.author Montero-Pau, Javier es_ES
dc.contributor.author Gimeno -Paez, Esther es_ES
dc.contributor.author García-Carpintero, Víctor es_ES
dc.contributor.author Ziarsolo, Peio es_ES
dc.contributor.author Menda, Naama es_ES
dc.contributor.author Mueller, Lukas A. es_ES
dc.contributor.author Blanca Postigo, José Miguel es_ES
dc.contributor.author Cañizares Sales, Joaquín es_ES
dc.contributor.author van der Knaap, Esther es_ES
dc.contributor.author Díez, María José es_ES
dc.date.accessioned 2021-07-01T03:32:41Z
dc.date.available 2021-07-01T03:32:41Z
dc.date.issued 2020-05-01 es_ES
dc.identifier.uri http://hdl.handle.net/10251/168608
dc.description.abstract [EN] A collection of 163 accessions, including Solanum pimpinellifolium, Solanum lycopersicum var. cerasiforme and Solanum lycopersicum var. lycopersicum, was selected to represent the genetic and morphological variability of tomato at its centers of origin and domestication: Andean regions of Peru and Ecuador and Mesoamerica. The collection is enriched with S. lycopersicum var. cerasiforme from the Amazonian region that has not been analyzed previously nor used extensively. The collection has been morphologically characterized showing diversity for fruit, flower and vegetative traits. Their genomes were sequenced in the Varitome project and are publicly available (solgenomics.net/projects/varitome). The identified SNPs have been annotated with respect to their impact and a total number of 37,974 out of 19,364,146 SNPs have been described as high impact by the SnpEeff analysis. GWAS has shown associations for different traits, demonstrating the potential of this collection for this kind of analysis. We have not only identified known QTLs and genes, but also new regions associated with traits such as fruit color, number of flowers per inflorescence or inflorescence architecture. To speed up and facilitate the use of this information, F2 populations were constructed by crossing the whole collection with three different parents. This F2 collection is useful for testing SNPs identified by GWAs, selection sweeps or any other candidate gene. All data is available on Solanaceae Genomics Network and the accession and F2 seeds are freely available at COMAV and at TGRC genebanks. All these resources together make this collection a good candidate for genetic studies. es_ES
dc.description.sponsorship This research was supported by the National Natural Science Foundation of USA Varitome project (NSF IOS 1564366). We would like to thank the Centro de Experiencias Cajamar de Paiporta (Valencia, Spain) for its excellent work done in growing the tomato plants in their greenhouses. We thank TGRC, ARS-GRIN, and COMAV genebanks for providing seeds and to all genebanks for their titan effort to preserve biodiversity. es_ES
dc.language Inglés es_ES
dc.publisher Springer Nature es_ES
dc.relation.ispartof Horticulture Research es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification GENETICA es_ES
dc.title Exploiting the diversity of tomato: the development of a phenotypically and genetically detailed germplasm collection es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41438-020-0291-7 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSF//1564366/US/Exploitation of Genetic and Epigenetic Variation in the Regulation of Tomato Fruit Quality Traits/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana es_ES
dc.description.bibliographicCitation Mata-Nicolás, E.; Montero-Pau, J.; Gimeno -Paez, E.; García-Carpintero, V.; Ziarsolo, P.; Menda, N.; Mueller, LA.... (2020). Exploiting the diversity of tomato: the development of a phenotypically and genetically detailed germplasm collection. Horticulture Research. 7(1):1-14. https://doi.org/10.1038/s41438-020-0291-7 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41438-020-0291-7 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 2052-7276 es_ES
dc.identifier.pmid 32377357 es_ES
dc.identifier.pmcid PMC7192925 es_ES
dc.relation.pasarela S\412023 es_ES
dc.contributor.funder National Science Foundation, EEUU es_ES
dc.contributor.funder UNIVERSITY OF GEORGIA RESEARCH FOUNDATION, INC. es_ES
dc.description.references Rick, C. M. & Fobes, J. F. Allozyme variation in the cultivated tomato and closely related species. Bull. Torre Bot. Club 102, 376–384 (1975). es_ES
dc.description.references Blanca, J. Variation revealed by SNP genotyping and morphology provides insight into the origin of the tomato. PLoS ONE 7, e48198, https://doi.org/10.1371/journal.pone.0048198 (2012). es_ES
dc.description.references Blanca, J. et al. Genomic variation in tomato, from wild ancestors to contemporary breeding accessions. BMC Genomics. https://doi.org/10.1186/s12864-015-1444-1 (2015). es_ES
dc.description.references Razifard, H. et al. Genomic evidence for complex domestication history of the cultivated tomato in Latin America. Mol. Biol. Evol. https://doi.org/10.1093/molbev/msz297 (2020). es_ES
dc.description.references Bai, Y. & Lindhout, P. Domestication and breeding of tomatoes: what have we gained and what can we gain in the future? https://doi.org/10.1093/aob/mcm150 (2007). es_ES
dc.description.references Peralta, I. E., Spooner, D. M. & Knapp, S. Taxonomy of wild tomatoes and their relatives (Solanum sect. Lycopersicoides, sect. Juglandifolia, sect. Lycopersicon; Solanaceae). Syst. Bot. Monogr. 84, 1–186 (2008). es_ES
dc.description.references Ichihashi, Y. & Sinha, N. R. From genome to phenome and back in tomato. Curr. Opin. Plant Biol. 18, 9–15 (2014). es_ES
dc.description.references Monforte, A. J., Diaz, A., Caño-Delgado, A. & Van Der Knaap, E. The genetic basis of fruit morphology in horticultural crops: lessons from tomato and melon. J. Exp. Bot. 65, 4625–4637 (2014). es_ES
dc.description.references Rodríguez, G. R. et al. Distribution of SUN, OVATE, LC, and FAS in the tomato germplasm and the relationship to fruit shape diversity. Plant Physiol. 156, 275–285 (2011). es_ES
dc.description.references Paran, I. & Van Der Knaap, E. Genetic and molecular regulation of fruit and plant domestication traits in tomato and pepper. J. Exp. Bot. 58, 3841–3852 (2007). es_ES
dc.description.references García-Martínez, S., Andreani, L., Garcia-Gusano, M., Geuna, F. & Ruiz, J. J. Evaluation of amplified fragment length polymorphism and simple sequence repeats for tomato germplasm fingerprinting: utility for grouping closely related traditional cultivars. Genome 49, 648–656 (2006). es_ES
dc.description.references Rick, C. M., Fobes, J. F. & Holle, M. Genetic Variation in Lycopersicon pimpinellifolium: evidence of evolutionary change in mating systems*. Plant Syst. Evol. 127, 139–170 (1977). es_ES
dc.description.references Caicedo, A. L. & Schaal, B. A. Population structure and phylogeography of Solanum pimpinellifolium inferred from a nuclear gene. Mol. Ecol. 13, 1871–1882 (2004). es_ES
dc.description.references Sifres, A., Picó, B., Blanca, J. M., De Frutos, R. & Nuez, F. Genetic structure of Lycopersicon pimpinellifolium (Solanaceae) populations collected after the ENSO event of 1997-1998. Genet. Resour. Crop Evol. 54, 359–377 (2007). es_ES
dc.description.references Zuriaga, E. et al. Genetic and bioclimatic variation in Solanum pimpinellifolium. Genet. Resour. Crop Evol. 56, 39–51 (2009). es_ES
dc.description.references Ricks, C. M. Potential improvement of tomatoes by controlled introgression of genes from wild species. in Proc. Conference Broadening the Genetic Base of Crops 167–176 (1978). es_ES
dc.description.references Stevens, M. A. & Ricks, C. M. Genetics and breeding. in The Tomato Crop: A Scientific Basis for Improvement (eds Atherton, J. & Rudich, J.) 661 (Chapman and Hall Ltd., 1986). https://doi.org/10.1007/978-94-009-3137-4. es_ES
dc.description.references Capel, C. et al. Wide-genome QTL mapping of fruit quality traits in a tomato RIL population derived from the wild-relative species Solanum pimpinellifolium L. Theor. Appl. Genet. 128, 2019–2035 (2015). es_ES
dc.description.references Rambla, J. L. et al. Identification, introgression, and validation of fruit volatile QTLs from a red-fruited wild tomato species. J. Exp. Bot. 68, 429–442 (2017). es_ES
dc.description.references Banerjee, M. K. & Kalloo, M. K. Sources and inheritance of resistance to leaf curl virus in Lycopersicon. Theor. Appl. Genet. 73, 707–710 (1987). es_ES
dc.description.references Alexander, L. & Hoover, M. Disease resistance in wild species of tomato: Report of the national screening Committee. Agric. Exp. Stn. Res. Bull. 752, 1–76 (1955). es_ES
dc.description.references Walter, J. M. Hereditary resistance to disease in tomato. Annu. Rev. Phytopathol. 5, 131–160 (1967). es_ES
dc.description.references Warnock, S. J. Natural habitats of Lycopersicon Species. HortScience 26, 466–471 (1991). es_ES
dc.description.references Rick, C. M. The role of natural hybridization in the derivation of cultivated tomatoes of western South America. Econ. Bot. 12, 346–367 (1958). es_ES
dc.description.references Rick, C. M. & Holle, M. Andean Lycopersicon esculentum var. cerasiforme: genetic variation and its evolutionary significance. Econ. Bot. 44, 69–78 (1990). es_ES
dc.description.references Nuez, F. & Díez, M. J. Tomato. in Vegetables II. Handbook of Plant Breeding (eds Prohens, J. & Nuez, F.) 249–323 (Springer, 2008). https://doi.org/10.1007/978-0-387-74110-9_7. es_ES
dc.description.references Arellano Rodríguez, L. J. et al. Evaluation of the resistance against Phytophthora infestans of wild populations of Solanum lycopersicum var. cerasiforme. Rev. Mex. Cienc. Agr. 4, 753–766 (2013). es_ES
dc.description.references Foolad, M. R. Genome mapping and molecular breeding of tomato. Int. J. Plant Genomics 2007, 64358, https://doi.org/10.1155/2007/64358 (2007). es_ES
dc.description.references Robertson, L. & Labate, J. Genetic Improvement of Solanaceous Crops Volume 2: Tomato. (Science Publishers, 2014). es_ES
dc.description.references Rothan, C., Diouf, I. & Causse, M. Trait discovery and editing in tomato. Plant J. 97, 73–90 (2019). es_ES
dc.description.references Bauchet, G. et al. Use of modern tomato breeding germplasm for deciphering the genetic control of agronomical traits by Genome Wide Association study. Theor. Appl. Genet. 130, 875–889 (2017). es_ES
dc.description.references Tieman, D. et al. A chemical genetic roadmap to improved tomato flavor. Science 355, 391–394 (2017). es_ES
dc.description.references Bauchet, G. et al. Identification of major loci and genomic regions controlling acid and volatile content in tomato fruit: implications for flavor improvement. N. Phytol. 215, 624–641 (2017). es_ES
dc.description.references Zhao, J. et al. Meta-analysis of genome-wide association studies provides insights into genetic control of tomato flavor. Nat. Commun. 10, 1–12 (2019). es_ES
dc.description.references Aflitos, S. et al. Exploring genetic variation in the tomato (Solanum section Lycopersicon) clade by whole-genome sequencing. Plant J. 80, 136–148 (2014). es_ES
dc.description.references Lin, T. et al. Genomic analyses provide insights into the history of tomato breeding. Nat. Genet. 46, 1220–1226 (2014). es_ES
dc.description.references Gao, L. et al. The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor. Nat. Genet. 51, 1044–1051 (2019). es_ES
dc.description.references Soyk, S. et al. Bypassing negative epistasis on yield in tomato imposed by a domestication gene. Cell 169, 1142–1155 (2017). es_ES
dc.description.references Zhu, G. et al. Rewiring of the fruit metabolome in tomato breeding. Cell 172, 249–261 (2018). es_ES
dc.description.references Widrlechner, M. P. Variation in breeding system of lycopersicon pimpinellifolium: implications for germplasm maintenance. Plant Genet. Resour. Newsl. 70, 38–43 (1987). es_ES
dc.description.references Williams, C. E., ST & Clair, D. A. Phenetic relationships and levels of variability detected by restriction fragment length polymorphism and random amplified polymorphic DNA analysis of cultivated and wild accessions of Lycopersicon esculentum. Genome 36, 619–630 (1993). es_ES
dc.description.references Georgiady, M. S., Whitkus, R. W. & Lord, E. M. Genetic analysis of traits distinguishing outcrossing and self-pollinating forms of currant tomato, Lycopersicon pimpinellifolium (Jusl.) Mill. Genetics 161, 333–344 (2002). es_ES
dc.description.references Brasil, J. N. et al. AIP1 is a novel Agenet/Tudor domain protein from Arabidopsis that interacts with regulators of DNA replication, transcription and chromatin remodeling. BMC Plant Biol. 15, 270 (2015). es_ES
dc.description.references Holland, N. et al. A comparative analysis of the plant cellulose synthase (CesA) gene family. Plant Physiol. 123, 1313–1323 (2000). es_ES
dc.description.references Zhang, H., Xia, R., Meyers, B. C. & Walbot, V. Evolution, functions, and mysteries of plant ARGONAUTE proteins. Curr. Opin. Plant Biol. 27, 84–90 (2015). es_ES
dc.description.references Bai, M. et al. Genome-wide identification of Dicer-like, Argonaute and RNA-dependent RNA polymerase gene families and their expression analyses in response to viral infection and abiotic stresses in Solanum lycopersicum. Gene 501, 52–62 (2012). es_ES
dc.description.references Xu, C. et al. A cascade of arabinosyltransferases controls shoot meristem size in tomato. Nat. Genet. 47, 784–792 (2015). es_ES
dc.description.references Meskauskiene, R. et al. FLU: a negative regulator of chlorophyll biosynthesis in arabidopsis thaliana. Proc. Natl Acad. Sci. USA 98, 12826–12831 (2001). es_ES
dc.description.references Joazeiro, C. A. P. & Weissman, A. M. RING finger proteins: mediators of ubiquitin ligase activity. Cell 102, 549–552 (2000). es_ES
dc.description.references Frary, A. et al. fw2. 2: a quantitative trait locus key evolution tomato fruit size. Science 289, 85–88 (2000). es_ES
dc.description.references Grandillo, S., Ku, H. M. & Tanksley, S. D. Identifying the loci responsible for natural variation in fruit size and shape in tomato. Theor. Appl. Genet. 99, 978–987 (1999). es_ES
dc.description.references Sacco, A. Exploring a tomato landraces collection for fruit-related traits by the aid of a high-throughput genomic platform. PLoS ONE 10, e0137139, https://doi.org/10.1371/journal.pone.0137139 (2015). es_ES
dc.description.references Mu, Q. et al. Fruit weight is controlled by Cell Size Regulator encoding a novel protein that is expressed in maturing tomato fruits. PLoS Genet. 13, 1–26 (2017). es_ES
dc.description.references Yoo, H. J. et al. Inferring the genetic determinants of fruit colors in tomato by carotenoid profiling. Molecules 22, 1–14 (2017). es_ES
dc.description.references IPGRI. Descriptors for Tomato Lycopersicum spp. (International Plant Genetic Resources Institute, Rome, Italy, 1996). es_ES
dc.description.references Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6, 80–92 (2012). es_ES
dc.description.references Gogarten, S. M. et al. Genetic association testing using the GENESIS R/Bioconductor package. Bioinformatics https://doi.org/10.1093/bioinformatics/btz567 (2019). es_ES
dc.description.references Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011). es_ES
dc.description.references Li, M. X., Yeung, J. M. Y., Cherny, S. S. & Sham, P. C. Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets. Hum. Genet. 131, 747–756 (2012). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem