- -

Burst firing synchronizes prefrontal and anterior cingulate cortex during attentional control

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Burst firing synchronizes prefrontal and anterior cingulate cortex during attentional control

Show simple item record

Files in this item

dc.contributor.author Womelsdorf, T. es_ES
dc.contributor.author Ardid-Ramírez, Joan Salvador es_ES
dc.contributor.author Everling, S. es_ES
dc.contributor.author Valiante, T. es_ES
dc.date.accessioned 2021-07-01T03:32:58Z
dc.date.available 2021-07-01T03:32:58Z
dc.date.issued 2014-11-17 es_ES
dc.identifier.issn 0960-9822 es_ES
dc.identifier.uri http://hdl.handle.net/10251/168617
dc.description.abstract [EN] Background: It is widely held that single cells in anterior cingulate and lateral prefrontal cortex (ACC/PFC) coordinate their activity during attentional processes, although cellular activity that may underlie such coordination across ACC/PFC has not been identified. We thus recorded cells in five ACC/PFC subfields of macaques engaged in a selective attention task, characterized those spiking events that indexed attention, and identified how spiking of distinct cell populations synchronized between brain areas. Results: We found that cells in ACC/PFC increased the firing of brief 200 Hz spike bursts when subjects shifted attention and engaged in selective visual processing. In contrast to non-burst spikes, burst spikes synchronized over large distances to local field potentials at narrow beta (12-20 Hz) and at gamma (50-75 Hz) frequencies. Long-range burst synchronization was anatomically specific, functionally connecting those subfields in area 24 (ACC) and area 46 (PFC) that are key players of attentional control. By splitting cells into putative excitatory (pE) and inhibitory (pI) cells by their broad and narrow spikes, we identified that bursts of pI cells preceded and that bursts of pE cells followed in time periods of maximal beta coherent network activity. In contrast, gamma bursts were transient impulses with equal timing across cell classes. Conclusions: These findings suggest that processes underlying burst firing and burst synchronization are candidate mechanisms to coordinate attention information across brain areas. We speculate that distinct burst-firing motifs realize beta and gamma synchrony to trigger versus maintain functional network states during goal-directed behavior. es_ES
dc.description.sponsorship We thank Daniel Kaping, Johanna Stucke, Iman Janemi, and Michelle Bale for help with the electrophysiological recordings and reconstruction of recording sites. This research was supported by grants from the Canadian Institutes of Health Research (CIHR), the Natural Sciences and Engineering Research Council of Canada (NSERC), and the Ontario Ministry of Economic Development and Innovation (MEDI) (T.W.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Current Biology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Selective communication es_ES
dc.subject Cellular mechanism es_ES
dc.subject Neural information es_ES
dc.subject Top-Down es_ES
dc.subject Oscillations es_ES
dc.subject Spiking es_ES
dc.subject Increases es_ES
dc.subject Frequency es_ES
dc.subject Cells es_ES
dc.subject Gain es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Burst firing synchronizes prefrontal and anterior cingulate cortex during attentional control es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.cub.2014.09.046 es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres es_ES
dc.description.bibliographicCitation Womelsdorf, T.; Ardid-Ramírez, JS.; Everling, S.; Valiante, T. (2014). Burst firing synchronizes prefrontal and anterior cingulate cortex during attentional control. Current Biology. 24(22):2613-2621. https://doi.org/10.1016/j.cub.2014.09.046 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.cub.2014.09.046 es_ES
dc.description.upvformatpinicio 2613 es_ES
dc.description.upvformatpfin 2621 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 24 es_ES
dc.description.issue 22 es_ES
dc.identifier.pmid 25308081 es_ES
dc.relation.pasarela S\434992 es_ES
dc.contributor.funder Canadian Institutes of Health Research es_ES
dc.contributor.funder Ontario Ministry of Economic Development and Innovation es_ES
dc.contributor.funder Natural Sciences and Engineering Research Council of Canada es_ES
dc.description.references Miller, E. K., & Buschman, T. J. (2013). Cortical circuits for the control of attention. Current Opinion in Neurobiology, 23(2), 216-222. doi:10.1016/j.conb.2012.11.011 es_ES
dc.description.references Battaglia, D., Witt, A., Wolf, F., & Geisel, T. (2012). Dynamic Effective Connectivity of Inter-Areal Brain Circuits. PLoS Computational Biology, 8(3), e1002438. doi:10.1371/journal.pcbi.1002438 es_ES
dc.description.references Kaping, D., Vinck, M., Hutchison, R. M., Everling, S., & Womelsdorf, T. (2011). Specific Contributions of Ventromedial, Anterior Cingulate, and Lateral Prefrontal Cortex for Attentional Selection and Stimulus Valuation. PLoS Biology, 9(12), e1001224. doi:10.1371/journal.pbio.1001224 es_ES
dc.description.references Buckley, M. J., Mansouri, F. A., Hoda, H., Mahboubi, M., Browning, P. G. F., Kwok, S. C., … Tanaka, K. (2009). Dissociable Components of Rule-Guided Behavior Depend on Distinct Medial and Prefrontal Regions. Science, 325(5936), 52-58. doi:10.1126/science.1172377 es_ES
dc.description.references Shenhav, A., Botvinick, M. M., & Cohen, J. D. (2013). The Expected Value of Control: An Integrative Theory of Anterior Cingulate Cortex Function. Neuron, 79(2), 217-240. doi:10.1016/j.neuron.2013.07.007 es_ES
dc.description.references Bonifazi, P., Goldin, M., Picardo, M. A., Jorquera, I., Cattani, A., Bianconi, G., … Cossart, R. (2009). GABAergic Hub Neurons Orchestrate Synchrony in Developing Hippocampal Networks. Science, 326(5958), 1419-1424. doi:10.1126/science.1175509 es_ES
dc.description.references Kwan, A. C., & Dan, Y. (2012). Dissection of Cortical Microcircuits by Single-Neuron Stimulation In Vivo. Current Biology, 22(16), 1459-1467. doi:10.1016/j.cub.2012.06.007 es_ES
dc.description.references Larkum, M. (2013). A cellular mechanism for cortical associations: an organizing principle for the cerebral cortex. Trends in Neurosciences, 36(3), 141-151. doi:10.1016/j.tins.2012.11.006 es_ES
dc.description.references Constantinople, C. M., & Bruno, R. M. (2011). Effects and Mechanisms of Wakefulness on Local Cortical Networks. Neuron, 69(6), 1061-1068. doi:10.1016/j.neuron.2011.02.040 es_ES
dc.description.references Li, C. T., Poo, M., & Dan, Y. (2009). Burst Spiking of a Single Cortical Neuron Modifies Global Brain State. Science, 324(5927), 643-646. doi:10.1126/science.1169957 es_ES
dc.description.references Larkum, M. E., Zhu, J. J., & Sakmann, B. (1999). A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature, 398(6725), 338-341. doi:10.1038/18686 es_ES
dc.description.references Harris, K. D., Hirase, H., Leinekugel, X., Henze, D. A., & Buzsáki, G. (2001). Temporal Interaction between Single Spikes and Complex Spike Bursts in Hippocampal Pyramidal Cells. Neuron, 32(1), 141-149. doi:10.1016/s0896-6273(01)00447-0 es_ES
dc.description.references Lovett-Barron, M., Turi, G. F., Kaifosh, P., Lee, P. H., Bolze, F., Sun, X.-H., … Losonczy, A. (2012). Regulation of neuronal input transformations by tunable dendritic inhibition. Nature Neuroscience, 15(3), 423-430. doi:10.1038/nn.3024 es_ES
dc.description.references Izhikevich, E. M., Desai, N. S., Walcott, E. C., & Hoppensteadt, F. C. (2003). Bursts as a unit of neural information: selective communication via resonance. Trends in Neurosciences, 26(3), 161-167. doi:10.1016/s0166-2236(03)00034-1 es_ES
dc.description.references Vinck, M., van Wingerden, M., Womelsdorf, T., Fries, P., & Pennartz, C. M. A. (2010). The pairwise phase consistency: A bias-free measure of rhythmic neuronal synchronization. NeuroImage, 51(1), 112-122. doi:10.1016/j.neuroimage.2010.01.073 es_ES
dc.description.references Vinck, M., Battaglia, F. P., Womelsdorf, T., & Pennartz, C. (2011). Improved measures of phase-coupling between spikes and the Local Field Potential. Journal of Computational Neuroscience, 33(1), 53-75. doi:10.1007/s10827-011-0374-4 es_ES
dc.description.references Traub, R. D., Whittington, M. A., Stanford, I. M., & Jefferys, J. G. R. (1996). A mechanism for generation of long-range synchronous fast oscillations in the cortex. Nature, 383(6601), 621-624. doi:10.1038/383621a0 es_ES
dc.description.references Markram, H., Toledo-Rodriguez, M., Wang, Y., Gupta, A., Silberberg, G., & Wu, C. (2004). Interneurons of the neocortical inhibitory system. Nature Reviews Neuroscience, 5(10), 793-807. doi:10.1038/nrn1519 es_ES
dc.description.references Kawaguchi, Y. (2001). Distinct Firing Patterns of Neuronal Subtypes in Cortical Synchronized Activities. The Journal of Neuroscience, 21(18), 7261-7272. doi:10.1523/jneurosci.21-18-07261.2001 es_ES
dc.description.references Womelsdorf, T., Valiante, T. A., Sahin, N. T., Miller, K. J., & Tiesinga, P. (2014). Dynamic circuit motifs underlying rhythmic gain control, gating and integration. Nature Neuroscience, 17(8), 1031-1039. doi:10.1038/nn.3764 es_ES
dc.description.references Vinck, M., Womelsdorf, T., Buffalo, E. A., Desimone, R., & Fries, P. (2013). Attentional Modulation of Cell-Class-Specific Gamma-Band Synchronization in Awake Monkey Area V4. Neuron, 80(4), 1077-1089. doi:10.1016/j.neuron.2013.08.019 es_ES
dc.description.references Vinck, M., Lima, B., Womelsdorf, T., Oostenveld, R., Singer, W., Neuenschwander, S., & Fries, P. (2010). Gamma-Phase Shifting in Awake Monkey Visual Cortex. Journal of Neuroscience, 30(4), 1250-1257. doi:10.1523/jneurosci.1623-09.2010 es_ES
dc.description.references Fries, P., Nikolić, D., & Singer, W. (2007). The gamma cycle. Trends in Neurosciences, 30(7), 309-316. doi:10.1016/j.tins.2007.05.005 es_ES
dc.description.references De Almeida, L., Idiart, M., & Lisman, J. E. (2009). A Second Function of Gamma Frequency Oscillations: An E%-Max Winner-Take-All Mechanism Selects Which Cells Fire. Journal of Neuroscience, 29(23), 7497-7503. doi:10.1523/jneurosci.6044-08.2009 es_ES
dc.description.references Schomburg, E. W., Anastassiou, C. A., Buzsaki, G., & Koch, C. (2012). The Spiking Component of Oscillatory Extracellular Potentials in the Rat Hippocampus. Journal of Neuroscience, 32(34), 11798-11811. doi:10.1523/jneurosci.0656-12.2012 es_ES
dc.description.references Ratté, S., Hong, S., De Schutter, E., & Prescott, S. A. (2013). Impact of Neuronal Properties on Network Coding: Roles of Spike Initiation Dynamics and Robust Synchrony Transfer. Neuron, 78(5), 758-772. doi:10.1016/j.neuron.2013.05.030 es_ES
dc.description.references Siegel, M., Donner, T. H., & Engel, A. K. (2012). Spectral fingerprints of large-scale neuronal interactions. Nature Reviews Neuroscience, 13(2), 121-134. doi:10.1038/nrn3137 es_ES
dc.description.references Salazar, R. F., Dotson, N. M., Bressler, S. L., & Gray, C. M. (2012). Content-Specific Fronto-Parietal Synchronization During Visual Working Memory. Science, 338(6110), 1097-1100. doi:10.1126/science.1224000 es_ES
dc.description.references Buschman, T. J., & Miller, E. K. (2007). Top-Down Versus Bottom-Up Control of Attention in the Prefrontal and Posterior Parietal Cortices. Science, 315(5820), 1860-1862. doi:10.1126/science.1138071 es_ES
dc.description.references Antzoulatos, E. G., & Miller, E. K. (2014). Increases in Functional Connectivity between Prefrontal Cortex and Striatum during Category Learning. Neuron, 83(1), 216-225. doi:10.1016/j.neuron.2014.05.005 es_ES
dc.description.references Gregoriou, G. G., Gotts, S. J., Zhou, H., & Desimone, R. (2009). High-Frequency, Long-Range Coupling Between Prefrontal and Visual Cortex During Attention. Science, 324(5931), 1207-1210. doi:10.1126/science.1171402 es_ES
dc.description.references Akam, T., & Kullmann, D. M. (2014). Oscillatory multiplexing of population codes for selective communication in the mammalian brain. Nature Reviews Neuroscience, 15(2), 111-122. doi:10.1038/nrn3668 es_ES
dc.description.references Li, X., Morita, K., Robinson, H. P. C., & Small, M. (2013). Control of layer 5 pyramidal cell spiking by oscillatory inhibition in the distal apical dendrites: a computational modeling study. Journal of Neurophysiology, 109(11), 2739-2756. doi:10.1152/jn.00397.2012 es_ES
dc.description.references Berger, T. K., Silberberg, G., Perin, R., & Markram, H. (2010). Brief Bursts Self-Inhibit and Correlate the Pyramidal Network. PLoS Biology, 8(9), e1000473. doi:10.1371/journal.pbio.1000473 es_ES
dc.description.references Hasselmo, M. E., & Sarter, M. (2010). Modes and Models of Forebrain Cholinergic Neuromodulation of Cognition. Neuropsychopharmacology, 36(1), 52-73. doi:10.1038/npp.2010.104 es_ES
dc.description.references Sara, S. J., & Bouret, S. (2012). Orienting and Reorienting: The Locus Coeruleus Mediates Cognition through Arousal. Neuron, 76(1), 130-141. doi:10.1016/j.neuron.2012.09.011 es_ES
dc.description.references Gollo, L. L., Mirasso, C., Sporns, O., & Breakspear, M. (2014). Mechanisms of Zero-Lag Synchronization in Cortical Motifs. PLoS Computational Biology, 10(4), e1003548. doi:10.1371/journal.pcbi.1003548 es_ES
dc.description.references Akam, T., & Kullmann, D. M. (2010). Oscillations and Filtering Networks Support Flexible Routing of Information. Neuron, 67(2), 308-320. doi:10.1016/j.neuron.2010.06.019 es_ES
dc.description.references Royer, S., Zemelman, B. V., Losonczy, A., Kim, J., Chance, F., Magee, J. C., & Buzsáki, G. (2012). Control of timing, rate and bursts of hippocampal place cells by dendritic and somatic inhibition. Nature Neuroscience, 15(5), 769-775. doi:10.1038/nn.3077 es_ES
dc.description.references Bobier, B., Stewart, T. C., & Eliasmith, C. (2014). A Unifying Mechanistic Model of Selective Attention in Spiking Neurons. PLoS Computational Biology, 10(6), e1003577. doi:10.1371/journal.pcbi.1003577 es_ES
dc.description.references Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J.-M. (2011). FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data. Computational Intelligence and Neuroscience, 2011, 1-9. doi:10.1155/2011/156869 es_ES


This item appears in the following Collection(s)

Show simple item record