- -

Burst firing synchronizes prefrontal and anterior cingulate cortex during attentional control

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Burst firing synchronizes prefrontal and anterior cingulate cortex during attentional control

Mostrar el registro completo del ítem

Womelsdorf, T.; Ardid-Ramírez, JS.; Everling, S.; Valiante, T. (2014). Burst firing synchronizes prefrontal and anterior cingulate cortex during attentional control. Current Biology. 24(22):2613-2621. https://doi.org/10.1016/j.cub.2014.09.046

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/168617

Ficheros en el ítem

Metadatos del ítem

Título: Burst firing synchronizes prefrontal and anterior cingulate cortex during attentional control
Autor: Womelsdorf, T. Ardid-Ramírez, Joan Salvador Everling, S. Valiante, T.
Entidad UPV: Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres
Fecha difusión:
Resumen:
[EN] Background: It is widely held that single cells in anterior cingulate and lateral prefrontal cortex (ACC/PFC) coordinate their activity during attentional processes, although cellular activity that may underlie such ...[+]
Palabras clave: Selective communication , Cellular mechanism , Neural information , Top-Down , Oscillations , Spiking , Increases , Frequency , Cells , Gain
Derechos de uso: Cerrado
Fuente:
Current Biology. (issn: 0960-9822 )
DOI: 10.1016/j.cub.2014.09.046
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.cub.2014.09.046
Agradecimientos:
We thank Daniel Kaping, Johanna Stucke, Iman Janemi, and Michelle Bale for help with the electrophysiological recordings and reconstruction of recording sites. This research was supported by grants from the Canadian ...[+]
Tipo: Artículo

References

Miller, E. K., & Buschman, T. J. (2013). Cortical circuits for the control of attention. Current Opinion in Neurobiology, 23(2), 216-222. doi:10.1016/j.conb.2012.11.011

Battaglia, D., Witt, A., Wolf, F., & Geisel, T. (2012). Dynamic Effective Connectivity of Inter-Areal Brain Circuits. PLoS Computational Biology, 8(3), e1002438. doi:10.1371/journal.pcbi.1002438

Kaping, D., Vinck, M., Hutchison, R. M., Everling, S., & Womelsdorf, T. (2011). Specific Contributions of Ventromedial, Anterior Cingulate, and Lateral Prefrontal Cortex for Attentional Selection and Stimulus Valuation. PLoS Biology, 9(12), e1001224. doi:10.1371/journal.pbio.1001224 [+]
Miller, E. K., & Buschman, T. J. (2013). Cortical circuits for the control of attention. Current Opinion in Neurobiology, 23(2), 216-222. doi:10.1016/j.conb.2012.11.011

Battaglia, D., Witt, A., Wolf, F., & Geisel, T. (2012). Dynamic Effective Connectivity of Inter-Areal Brain Circuits. PLoS Computational Biology, 8(3), e1002438. doi:10.1371/journal.pcbi.1002438

Kaping, D., Vinck, M., Hutchison, R. M., Everling, S., & Womelsdorf, T. (2011). Specific Contributions of Ventromedial, Anterior Cingulate, and Lateral Prefrontal Cortex for Attentional Selection and Stimulus Valuation. PLoS Biology, 9(12), e1001224. doi:10.1371/journal.pbio.1001224

Buckley, M. J., Mansouri, F. A., Hoda, H., Mahboubi, M., Browning, P. G. F., Kwok, S. C., … Tanaka, K. (2009). Dissociable Components of Rule-Guided Behavior Depend on Distinct Medial and Prefrontal Regions. Science, 325(5936), 52-58. doi:10.1126/science.1172377

Shenhav, A., Botvinick, M. M., & Cohen, J. D. (2013). The Expected Value of Control: An Integrative Theory of Anterior Cingulate Cortex Function. Neuron, 79(2), 217-240. doi:10.1016/j.neuron.2013.07.007

Bonifazi, P., Goldin, M., Picardo, M. A., Jorquera, I., Cattani, A., Bianconi, G., … Cossart, R. (2009). GABAergic Hub Neurons Orchestrate Synchrony in Developing Hippocampal Networks. Science, 326(5958), 1419-1424. doi:10.1126/science.1175509

Kwan, A. C., & Dan, Y. (2012). Dissection of Cortical Microcircuits by Single-Neuron Stimulation In Vivo. Current Biology, 22(16), 1459-1467. doi:10.1016/j.cub.2012.06.007

Larkum, M. (2013). A cellular mechanism for cortical associations: an organizing principle for the cerebral cortex. Trends in Neurosciences, 36(3), 141-151. doi:10.1016/j.tins.2012.11.006

Constantinople, C. M., & Bruno, R. M. (2011). Effects and Mechanisms of Wakefulness on Local Cortical Networks. Neuron, 69(6), 1061-1068. doi:10.1016/j.neuron.2011.02.040

Li, C. T., Poo, M., & Dan, Y. (2009). Burst Spiking of a Single Cortical Neuron Modifies Global Brain State. Science, 324(5927), 643-646. doi:10.1126/science.1169957

Larkum, M. E., Zhu, J. J., & Sakmann, B. (1999). A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature, 398(6725), 338-341. doi:10.1038/18686

Harris, K. D., Hirase, H., Leinekugel, X., Henze, D. A., & Buzsáki, G. (2001). Temporal Interaction between Single Spikes and Complex Spike Bursts in Hippocampal Pyramidal Cells. Neuron, 32(1), 141-149. doi:10.1016/s0896-6273(01)00447-0

Lovett-Barron, M., Turi, G. F., Kaifosh, P., Lee, P. H., Bolze, F., Sun, X.-H., … Losonczy, A. (2012). Regulation of neuronal input transformations by tunable dendritic inhibition. Nature Neuroscience, 15(3), 423-430. doi:10.1038/nn.3024

Izhikevich, E. M., Desai, N. S., Walcott, E. C., & Hoppensteadt, F. C. (2003). Bursts as a unit of neural information: selective communication via resonance. Trends in Neurosciences, 26(3), 161-167. doi:10.1016/s0166-2236(03)00034-1

Vinck, M., van Wingerden, M., Womelsdorf, T., Fries, P., & Pennartz, C. M. A. (2010). The pairwise phase consistency: A bias-free measure of rhythmic neuronal synchronization. NeuroImage, 51(1), 112-122. doi:10.1016/j.neuroimage.2010.01.073

Vinck, M., Battaglia, F. P., Womelsdorf, T., & Pennartz, C. (2011). Improved measures of phase-coupling between spikes and the Local Field Potential. Journal of Computational Neuroscience, 33(1), 53-75. doi:10.1007/s10827-011-0374-4

Traub, R. D., Whittington, M. A., Stanford, I. M., & Jefferys, J. G. R. (1996). A mechanism for generation of long-range synchronous fast oscillations in the cortex. Nature, 383(6601), 621-624. doi:10.1038/383621a0

Markram, H., Toledo-Rodriguez, M., Wang, Y., Gupta, A., Silberberg, G., & Wu, C. (2004). Interneurons of the neocortical inhibitory system. Nature Reviews Neuroscience, 5(10), 793-807. doi:10.1038/nrn1519

Kawaguchi, Y. (2001). Distinct Firing Patterns of Neuronal Subtypes in Cortical Synchronized Activities. The Journal of Neuroscience, 21(18), 7261-7272. doi:10.1523/jneurosci.21-18-07261.2001

Womelsdorf, T., Valiante, T. A., Sahin, N. T., Miller, K. J., & Tiesinga, P. (2014). Dynamic circuit motifs underlying rhythmic gain control, gating and integration. Nature Neuroscience, 17(8), 1031-1039. doi:10.1038/nn.3764

Vinck, M., Womelsdorf, T., Buffalo, E. A., Desimone, R., & Fries, P. (2013). Attentional Modulation of Cell-Class-Specific Gamma-Band Synchronization in Awake Monkey Area V4. Neuron, 80(4), 1077-1089. doi:10.1016/j.neuron.2013.08.019

Vinck, M., Lima, B., Womelsdorf, T., Oostenveld, R., Singer, W., Neuenschwander, S., & Fries, P. (2010). Gamma-Phase Shifting in Awake Monkey Visual Cortex. Journal of Neuroscience, 30(4), 1250-1257. doi:10.1523/jneurosci.1623-09.2010

Fries, P., Nikolić, D., & Singer, W. (2007). The gamma cycle. Trends in Neurosciences, 30(7), 309-316. doi:10.1016/j.tins.2007.05.005

De Almeida, L., Idiart, M., & Lisman, J. E. (2009). A Second Function of Gamma Frequency Oscillations: An E%-Max Winner-Take-All Mechanism Selects Which Cells Fire. Journal of Neuroscience, 29(23), 7497-7503. doi:10.1523/jneurosci.6044-08.2009

Schomburg, E. W., Anastassiou, C. A., Buzsaki, G., & Koch, C. (2012). The Spiking Component of Oscillatory Extracellular Potentials in the Rat Hippocampus. Journal of Neuroscience, 32(34), 11798-11811. doi:10.1523/jneurosci.0656-12.2012

Ratté, S., Hong, S., De Schutter, E., & Prescott, S. A. (2013). Impact of Neuronal Properties on Network Coding: Roles of Spike Initiation Dynamics and Robust Synchrony Transfer. Neuron, 78(5), 758-772. doi:10.1016/j.neuron.2013.05.030

Siegel, M., Donner, T. H., & Engel, A. K. (2012). Spectral fingerprints of large-scale neuronal interactions. Nature Reviews Neuroscience, 13(2), 121-134. doi:10.1038/nrn3137

Salazar, R. F., Dotson, N. M., Bressler, S. L., & Gray, C. M. (2012). Content-Specific Fronto-Parietal Synchronization During Visual Working Memory. Science, 338(6110), 1097-1100. doi:10.1126/science.1224000

Buschman, T. J., & Miller, E. K. (2007). Top-Down Versus Bottom-Up Control of Attention in the Prefrontal and Posterior Parietal Cortices. Science, 315(5820), 1860-1862. doi:10.1126/science.1138071

Antzoulatos, E. G., & Miller, E. K. (2014). Increases in Functional Connectivity between Prefrontal Cortex and Striatum during Category Learning. Neuron, 83(1), 216-225. doi:10.1016/j.neuron.2014.05.005

Gregoriou, G. G., Gotts, S. J., Zhou, H., & Desimone, R. (2009). High-Frequency, Long-Range Coupling Between Prefrontal and Visual Cortex During Attention. Science, 324(5931), 1207-1210. doi:10.1126/science.1171402

Akam, T., & Kullmann, D. M. (2014). Oscillatory multiplexing of population codes for selective communication in the mammalian brain. Nature Reviews Neuroscience, 15(2), 111-122. doi:10.1038/nrn3668

Li, X., Morita, K., Robinson, H. P. C., & Small, M. (2013). Control of layer 5 pyramidal cell spiking by oscillatory inhibition in the distal apical dendrites: a computational modeling study. Journal of Neurophysiology, 109(11), 2739-2756. doi:10.1152/jn.00397.2012

Berger, T. K., Silberberg, G., Perin, R., & Markram, H. (2010). Brief Bursts Self-Inhibit and Correlate the Pyramidal Network. PLoS Biology, 8(9), e1000473. doi:10.1371/journal.pbio.1000473

Hasselmo, M. E., & Sarter, M. (2010). Modes and Models of Forebrain Cholinergic Neuromodulation of Cognition. Neuropsychopharmacology, 36(1), 52-73. doi:10.1038/npp.2010.104

Sara, S. J., & Bouret, S. (2012). Orienting and Reorienting: The Locus Coeruleus Mediates Cognition through Arousal. Neuron, 76(1), 130-141. doi:10.1016/j.neuron.2012.09.011

Gollo, L. L., Mirasso, C., Sporns, O., & Breakspear, M. (2014). Mechanisms of Zero-Lag Synchronization in Cortical Motifs. PLoS Computational Biology, 10(4), e1003548. doi:10.1371/journal.pcbi.1003548

Akam, T., & Kullmann, D. M. (2010). Oscillations and Filtering Networks Support Flexible Routing of Information. Neuron, 67(2), 308-320. doi:10.1016/j.neuron.2010.06.019

Royer, S., Zemelman, B. V., Losonczy, A., Kim, J., Chance, F., Magee, J. C., & Buzsáki, G. (2012). Control of timing, rate and bursts of hippocampal place cells by dendritic and somatic inhibition. Nature Neuroscience, 15(5), 769-775. doi:10.1038/nn.3077

Bobier, B., Stewart, T. C., & Eliasmith, C. (2014). A Unifying Mechanistic Model of Selective Attention in Spiking Neurons. PLoS Computational Biology, 10(6), e1003577. doi:10.1371/journal.pcbi.1003577

Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J.-M. (2011). FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data. Computational Intelligence and Neuroscience, 2011, 1-9. doi:10.1155/2011/156869

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem