- -

Production of chiral alcohols from racemic mixtures by integrated heterogeneous chemoenzymatic catalysis in fixed bed continuous operation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Production of chiral alcohols from racemic mixtures by integrated heterogeneous chemoenzymatic catalysis in fixed bed continuous operation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Carceller-Carceller, Jose Miguel es_ES
dc.contributor.author Mifsud, Maria es_ES
dc.contributor.author Climent Olmedo, María José es_ES
dc.contributor.author Iborra Chornet, Sara es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.date.accessioned 2021-07-01T03:33:03Z
dc.date.available 2021-07-01T03:33:03Z
dc.date.issued 2020-05-07 es_ES
dc.identifier.issn 1463-9262 es_ES
dc.identifier.uri http://hdl.handle.net/10251/168620
dc.description.abstract [EN] Valuable chiral alcs. have been obtained from racemic mixts. with an integrated heterogeneous chemoenzymic catalyst in a two consecutive fixed catalytic bed continuous reactor system. In the first bed the racemic mixt. of alcs. is oxidized to the prochiral ketone with a Zr-Beta zeolite and using acetone as the hydrogen acceptor. In the second catalytic bed the prochiral ketone is stereoselectively reduced with an alc. dehydrogenase (ADH) immobilized on a two dimensional (2D) zeolite. In this process, the alc. (isopropanol) formed by the redn. of acetone in the first step reduces the cofactor in the second step, and the full reaction cycle is in this way internally closed with 100% atom economy. A conversion of about 95% with ~100% selectivity to either the (R) or the (S) alc. has been obtained for a variety of racemic mixts. of alcs es_ES
dc.description.sponsorship The research leading to these results has received funding from the Spanish Ministry of Science, Innovation and Universities through "Severo Ochoa" Excellence Programme (SEV-2016-0683) and the PGC2018-097277-B-100(MCIU/AEI/FEDER, UE) project. J. M. C. thanks to Universitat Politecnica de Valencia for a predoctoral fellowship. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Green Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.title Production of chiral alcohols from racemic mixtures by integrated heterogeneous chemoenzymatic catalysis in fixed bed continuous operation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c9gc04127c es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-097277-B-I00/ES/MEJORA DEL CONCEPTO DE BIORREFINERIA MEDIANTE IMPLEMENTACION DE NUEVOS PROCESOS CATALITICOS CON CATALIZADORES SOLIDOS DE METALES NO NOBLES PARA LA PRODUCCION DE BIOCOMPUESTOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Carceller-Carceller, JM.; Mifsud, M.; Climent Olmedo, MJ.; Iborra Chornet, S.; Corma Canós, A. (2020). Production of chiral alcohols from racemic mixtures by integrated heterogeneous chemoenzymatic catalysis in fixed bed continuous operation. Green Chemistry. 22(9):2767-2777. https://doi.org/10.1039/c9gc04127c es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c9gc04127c es_ES
dc.description.upvformatpinicio 2767 es_ES
dc.description.upvformatpfin 2777 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 22 es_ES
dc.description.issue 9 es_ES
dc.relation.pasarela S\433083 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references R. A. Sheldon , Chirotechnology: Industrial synthesis of optically active compounds , Marcel Dekker, Inc. , New York , 1993 es_ES
dc.description.references Okamoto, Y., & Ikai, T. (2008). Chiral HPLC for efficient resolution of enantiomers. Chemical Society Reviews, 37(12), 2593. doi:10.1039/b808881k es_ES
dc.description.references Xie, R., Chu, L.-Y., & Deng, J.-G. (2008). Membranes and membrane processes for chiral resolution. Chemical Society Reviews, 37(6), 1243. doi:10.1039/b713350b es_ES
dc.description.references Nie, Y., Xu, Y., Qing Mu, X., Tang, Y., Jiang, J., & Hao Sun, Z. (2005). High-yield conversion of (R)-2-octanol from the corresponding racemate by stereoinversion using Candida rugosa. Biotechnology Letters, 27(1), 23-26. doi:10.1007/s10529-004-6310-1 es_ES
dc.description.references Liese, A., Zelinski, T., Kula, M.-R., Kierkels, H., Karutz, M., Kragl, U., & Wandrey, C. (1998). A novel reactor concept for the enzymatic reduction of poorly soluble ketones. Journal of Molecular Catalysis B: Enzymatic, 4(1-2), 91-99. doi:10.1016/s1381-1177(97)00025-8 es_ES
dc.description.references Pociecha, D., Glogarová, M., Gorecka, E., & Mieczkowski, J. (2000). Behavior of frustrated phase in ferroelectric and antiferroelectric liquid crystalline mixtures. Physical Review E, 61(6), 6674-6677. doi:10.1103/physreve.61.6674 es_ES
dc.description.references Xue, L., Zhou, D.-J., Tang, L., Ji, X.-F., Huang, M.-Y., & Jiang, Y.-Y. (2004). The asymmetric hydration of 1-octene to (S)-(+)-2-octanol with a biopolymer–metal complex, silica-supported chitosan–cobalt complex. Reactive and Functional Polymers, 58(2), 117-121. doi:10.1016/j.reactfunctpolym.2003.10.003 es_ES
dc.description.references Wu, Z., Li, X., Li, F., Yue, H., He, C., Xie, F., & Wang, Z. (2014). Enantioselective transesterification of (R,S)-2-pentanol catalyzed by a new flower-like nanobioreactor. RSC Adv., 4(64), 33998-34002. doi:10.1039/c4ra04431b es_ES
dc.description.references Rachwalski, M., Vermue, N., & Rutjes, F. P. J. T. (2013). Recent advances in enzymatic and chemical deracemisation of racemic compounds. Chemical Society Reviews, 42(24), 9268. doi:10.1039/c3cs60175g es_ES
dc.description.references Bakker, M., Spruijt, A. ., van Rantwijk, F., & Sheldon, R. . (2000). Highly enantioselective aminoacylase-catalyzed transesterification of secondary alcohols. Tetrahedron: Asymmetry, 11(8), 1801-1808. doi:10.1016/s0957-4166(00)00118-x es_ES
dc.description.references Kim, C., Lee, J., Cho, J., Oh, Y., Choi, Y. K., Choi, E., … Kim, M.-J. (2013). Kinetic and Dynamic Kinetic Resolution of Secondary Alcohols with Ionic-Surfactant-Coated Burkholderia cepacia Lipase: Substrate Scope and Enantioselectivity. The Journal of Organic Chemistry, 78(6), 2571-2578. doi:10.1021/jo3027627 es_ES
dc.description.references Lee, J. H., Han, K., Kim, M., & Park, J. (2010). Chemoenzymatic Dynamic Kinetic Resolution of Alcohols and Amines. European Journal of Organic Chemistry, 2010(6), 999-1015. doi:10.1002/ejoc.200900935 es_ES
dc.description.references Parvulescu, A., Janssens, J., Vanderleyden, J., & De Vos, D. (2010). Heterogeneous Catalysts for Racemization and Dynamic Kinetic Resolution of Amines and Secondary Alcohols. Topics in Catalysis, 53(13-14), 931-941. doi:10.1007/s11244-010-9512-x es_ES
dc.description.references Verho, O., & Bäckvall, J.-E. (2015). Chemoenzymatic Dynamic Kinetic Resolution: A Powerful Tool for the Preparation of Enantiomerically Pure Alcohols and Amines. Journal of the American Chemical Society, 137(12), 3996-4009. doi:10.1021/jacs.5b01031 es_ES
dc.description.references Gruber, C. C., Lavandera, I., Faber, K., & Kroutil, W. (2006). From a Racemate to a Single Enantiomer: Deracemization by Stereoinversion. Advanced Synthesis & Catalysis, 348(14), 1789-1805. doi:10.1002/adsc.200606158 es_ES
dc.description.references Voss, C. V., Gruber, C. C., Faber, K., Knaus, T., Macheroux, P., & Kroutil, W. (2008). Orchestration of Concurrent Oxidation and Reduction Cycles for Stereoinversion and Deracemisation of sec-Alcohols. Journal of the American Chemical Society, 130(42), 13969-13972. doi:10.1021/ja804816a es_ES
dc.description.references Díaz-Rodríguez, A., Ríos-Lombardía, N., Sattler, J. H., Lavandera, I., Gotor-Fernández, V., Kroutil, W., & Gotor, V. (2015). Deracemisation of profenol core by combining laccase/TEMPO-mediated oxidation and alcohol dehydrogenase-catalysed dynamic kinetic resolution. Catalysis Science & Technology, 5(3), 1443-1446. doi:10.1039/c4cy01351d es_ES
dc.description.references Kędziora, K., Díaz-Rodríguez, A., Lavandera, I., Gotor-Fernández, V., & Gotor, V. (2014). Laccase/TEMPO-mediated system for the thermodynamically disfavored oxidation of 2,2-dihalo-1-phenylethanol derivatives. Green Chemistry, 16(5), 2448. doi:10.1039/c4gc00066h es_ES
dc.description.references Liardo, E., Ríos-Lombardía, N., Morís, F., González-Sabín, J., & Rebolledo, F. (2018). A Straightforward Deracemization of sec -Alcohols Combining Organocatalytic Oxidation and Biocatalytic Reduction. European Journal of Organic Chemistry, 2018(23), 3031-3035. doi:10.1002/ejoc.201800569 es_ES
dc.description.references Méndez-Sánchez, D., Mangas-Sánchez, J., Lavandera, I., Gotor, V., & Gotor-Fernández, V. (2015). Chemoenzymatic Deracemization of Secondary Alcohols by using a TEMPO-Iodine-Alcohol Dehydrogenase System. ChemCatChem, 7(24), 4016-4020. doi:10.1002/cctc.201500816 es_ES
dc.description.references Gröger, H., & Hummel, W. (2014). Combining the ‘two worlds’ of chemocatalysis and biocatalysis towards multi-step one-pot processes in aqueous media. Current Opinion in Chemical Biology, 19, 171-179. doi:10.1016/j.cbpa.2014.03.002 es_ES
dc.description.references Corma, A. (2016). Heterogeneous Catalysis: Understanding for Designing, and Designing for Applications. Angewandte Chemie International Edition, 55(21), 6112-6113. doi:10.1002/anie.201601231 es_ES
dc.description.references Kunkeler, P. J., Zuurdeeg, B. J., van der Waal, J. C., van Bokhoven, J. A., Koningsberger, D. C., & van Bekkum, H. (1998). Zeolite Beta: The Relationship between Calcination Procedure, Aluminum Configuration, and Lewis Acidity. Journal of Catalysis, 180(2), 234-244. doi:10.1006/jcat.1998.2273 es_ES
dc.description.references Van der Waal, J. C., Creyghton, E. J., Kunkeler, P. J., Tan, K., & van Bekkum, H. (1997). Topics In Catalysis, 4(3/4), 261-268. doi:10.1023/a:1019160827175 es_ES
dc.description.references Creyghton, E. ., Ganeshie, S. ., Downing, R. ., & van Bekkum, H. (1997). Stereoselective Meerwein–Ponndorf–Verley and Oppenauer reactions catalysed by zeolite BEA1Communication presented at the First Francqui Colloquium, Brussels, 19–20 February 1996.1. Journal of Molecular Catalysis A: Chemical, 115(3), 457-472. doi:10.1016/s1381-1169(96)00351-2 es_ES
dc.description.references Van der Waal, J. C., Tan, K., & van Bekkum, H. (1996). Zeolite titanium beta: a selective and water resistant catalyst in Meerwein-Ponndorf-Verley-Oppenauer reactions. Catalysis Letters, 41(1-2), 63-67. doi:10.1007/bf00811714 es_ES
dc.description.references Corma, A., Domine, M. E., Nemeth, L., & Valencia, S. (2002). Al-Free Sn-Beta Zeolite as a Catalyst for the Selective Reduction of Carbonyl Compounds (Meerwein−Ponndorf−Verley Reaction). Journal of the American Chemical Society, 124(13), 3194-3195. doi:10.1021/ja012297m es_ES
dc.description.references Corma, A. (2003). Water-resistant solid Lewis acid catalysts: Meerwein–Ponndorf–Verley and Oppenauer reactions catalyzed by tin-beta zeolite. Journal of Catalysis, 215(2), 294-304. doi:10.1016/s0021-9517(03)00014-9 es_ES
dc.description.references Boronat, M., Corma, A., & Renz, M. (2006). Mechanism of the Meerwein−Ponndorf−Verley−Oppenauer (MPVO) Redox Equilibrium on Sn− and Zr−Beta Zeolite Catalysts. The Journal of Physical Chemistry B, 110(42), 21168-21174. doi:10.1021/jp063249x es_ES
dc.description.references Boronat, M., Corma, A., Renz, M., & Viruela, P. M. (2006). Predicting the Activity of Single Isolated Lewis Acid Sites in Solid Catalysts. Chemistry - A European Journal, 12(27), 7067-7077. doi:10.1002/chem.200600478 es_ES
dc.description.references Hussain, W., Pollard, D. J., Truppo, M., & Lye, G. J. (2008). Enzymatic ketone reductions with co-factor recycling: Improved reactions with ionic liquid co-solvents. Journal of Molecular Catalysis B: Enzymatic, 55(1-2), 19-29. doi:10.1016/j.molcatb.2008.01.006 es_ES
dc.description.references Tschaen, D. M., Abramson, L., Cai, D., Desmond, R., Dolling, U.-H., Frey, L., … Verhoeven, T. R. (1995). Asymmetric Synthesis of MK-0499. The Journal of Organic Chemistry, 60(14), 4324-4330. doi:10.1021/jo00119a008 es_ES
dc.description.references KEINAN, E., SETH, K. K., & LAMED, R. (1987). Synthetic Applications of Alcohol-Dehydrogenase from Thermoanaerobium brockii. Annals of the New York Academy of Sciences, 501(1 Enzyme Engine), 130-149. doi:10.1111/j.1749-6632.1987.tb45698.x es_ES
dc.description.references Hummel, W. (1990). Reduction of acetophenone to R(+)-phenylethanol by a new alcohol dehydrogenase from Lactobacillus kefir. Applied Microbiology and Biotechnology, 34(1). doi:10.1007/bf00170916 es_ES
dc.description.references Temiño, D. M.-R. D., Hartmeier, W., & Ansorge-Schumacher, M. B. (2005). Entrapment of the alcohol dehydrogenase from Lactobacillus kefir in polyvinyl alcohol for the synthesis of chiral hydrophobic alcohols in organic solvents. Enzyme and Microbial Technology, 36(1), 3-9. doi:10.1016/j.enzmictec.2004.01.013 es_ES
dc.description.references L. Cao , Carrier-bound Immobilized Enzymes: Principles, Application and Design , Wiley-VCH , 2006 es_ES
dc.description.references K. Faber , Biotransformations in Organic Chemistry , Springer B , New York , 1996 es_ES
dc.description.references Benítez-Mateos, A. I., Contente, M. L., Velasco-Lozano, S., Paradisi, F., & López-Gallego, F. (2018). Self-Sufficient Flow-Biocatalysis by Coimmobilization of Pyridoxal 5′-Phosphate and ω-Transaminases onto Porous Carriers. ACS Sustainable Chemistry & Engineering, 6(10), 13151-13159. doi:10.1021/acssuschemeng.8b02672 es_ES
dc.description.references Velasco‐Lozano, S., Benítez‐Mateos, A. I., & López‐Gallego, F. (2016). Co‐immobilized Phosphorylated Cofactors and Enzymes as Self‐Sufficient Heterogeneous Biocatalysts for Chemical Processes. Angewandte Chemie International Edition, 56(3), 771-775. doi:10.1002/anie.201609758 es_ES
dc.description.references DiCosimo, R., McAuliffe, J., Poulose, A. J., & Bohlmann, G. (2013). Industrial use of immobilized enzymes. Chemical Society Reviews, 42(15), 6437. doi:10.1039/c3cs35506c es_ES
dc.description.references Benítez-Mateos, A. I., San Sebastian, E., Ríos-Lombardía, N., Morís, F., González-Sabín, J., & López-Gallego, F. (2017). Asymmetric Reduction of Prochiral Ketones by Using Self-Sufficient Heterogeneous Biocatalysts Based on NADPH-Dependent Ketoreductases. Chemistry - A European Journal, 23(66), 16843-16852. doi:10.1002/chem.201703475 es_ES
dc.description.references Bolivar, J. M., Wilson, L., Ferrarotti, S. A., Guisán, J. M., Fernández-Lafuente, R., & Mateo, C. (2006). Improvement of the stability of alcohol dehydrogenase by covalent immobilization on glyoxyl-agarose. Journal of Biotechnology, 125(1), 85-94. doi:10.1016/j.jbiotec.2006.01.028 es_ES
dc.description.references Xu, S., Lu, Y., Jiang, Z., & Wu, H. (2006). Silica nanotubes-doped alginate gel for yeast alcohol dehydrogenase immobilization. Journal of Molecular Catalysis B: Enzymatic, 43(1-4), 68-73. doi:10.1016/j.molcatb.2006.06.026 es_ES
dc.description.references Shakir, M., Nasir, Z., Khan, M. S., Lutfullah, Alam, M. F., Younus, H., & Al-Resayes, S. I. (2015). Study on immobilization of yeast alcohol dehydrogenase on nanocrystalline Ni-Co ferrites as magnetic support. International Journal of Biological Macromolecules, 72, 1196-1204. doi:10.1016/j.ijbiomac.2014.10.045 es_ES
dc.description.references Jiang, X.-P., Lu, T.-T., Liu, C.-H., Ling, X.-M., Zhuang, M.-Y., Zhang, J.-X., & Zhang, Y.-W. (2016). Immobilization of dehydrogenase onto epoxy-functionalized nanoparticles for synthesis of (R)-mandelic acid. International Journal of Biological Macromolecules, 88, 9-17. doi:10.1016/j.ijbiomac.2016.03.031 es_ES
dc.description.references Alam, M. F., Laskar, A. A., Zubair, M., Baig, U., & Younus, H. (2015). Immobilization of yeast alcohol dehydrogenase on polyaniline coated silver nanoparticles formed by green synthesis. Journal of Molecular Catalysis B: Enzymatic, 119, 78-84. doi:10.1016/j.molcatb.2015.06.004 es_ES
dc.description.references Liu, L., Yu, J., & Chen, X. (2015). Enhanced Stability and Reusability of Alcohol Dehydrogenase Covalently Immobilized on Magnetic Graphene Oxide Nanocomposites. Journal of Nanoscience and Nanotechnology, 15(2), 1213-1220. doi:10.1166/jnn.2015.9024 es_ES
dc.description.references Dreifke, M., Brieler, F. J., & Fröba, M. (2017). Immobilization of Alcohol Dehydrogenase from E. coli onto Mesoporous Silica for Application as a Cofactor Recycling System. ChemCatChem, 9(7), 1197-1210. doi:10.1002/cctc.201601288 es_ES
dc.description.references Ghannadi, S., Abdizadeh, H., Miroliaei, M., & Saboury, A. A. (2019). Immobilization of Alcohol Dehydrogenase on Titania Nanoparticles To Enhance Enzyme Stability and Remove Substrate Inhibition in the Reaction of Formaldehyde to Methanol. Industrial & Engineering Chemistry Research, 58(23), 9844-9854. doi:10.1021/acs.iecr.9b01370 es_ES
dc.description.references Corma, A., Fornes, V., Pergher, S. B., Maesen, T. L. M., & Buglass, J. G. (1998). Delaminated zeolite precursors as selective acidic catalysts. Nature, 396(6709), 353-356. doi:10.1038/24592 es_ES
dc.description.references Gallego, E. M., Portilla, M. T., Paris, C., León-Escamilla, A., Boronat, M., Moliner, M., & Corma, A. (2017). «Ab initio» synthesis of zeolites for preestablished catalytic reactions. Science, 355(6329), 1051-1054. doi:10.1126/science.aal0121 es_ES
dc.description.references Margarit, V. J., Díaz-Rey, M. R., Navarro, M. T., Martínez, C., & Corma, A. (2018). Direct Synthesis of Nano-Ferrierite along the 10-Ring-Channel Direction Boosts Their Catalytic Behavior. Angewandte Chemie International Edition, 57(13), 3459-3463. doi:10.1002/anie.201711418 es_ES
dc.description.references Luo, H. Y., Michaelis, V. K., Hodges, S., Griffin, R. G., & Román-Leshkov, Y. (2015). One-pot synthesis of MWW zeolite nanosheets using a rationally designed organic structure-directing agent. Chemical Science, 6(11), 6320-6324. doi:10.1039/c5sc01912e es_ES
dc.description.references Corma, A., Fornes, V., & Rey, F. (2002). Delaminated Zeolites: An Efficient Support for Enzymes. Advanced Materials, 14(1), 71-74. doi:10.1002/1521-4095(20020104)14:1<71::aid-adma71>3.0.co;2-w es_ES
dc.description.references Sheldon, R. A., & van Pelt, S. (2013). Enzyme immobilisation in biocatalysis: why, what and how. Chem. Soc. Rev., 42(15), 6223-6235. doi:10.1039/c3cs60075k es_ES
dc.description.references Thiel, D., Doknić, D., & Deska, J. (2014). Enzymatic aerobic ring rearrangement of optically active furylcarbinols. Nature Communications, 5(1). doi:10.1038/ncomms6278 es_ES
dc.description.references Kniemeyer, O., & Heider, J. (2001). ( S )-1-Phenylethanol dehydrogenase of Azoarcus sp. strain EbN1, an enzyme of anaerobic ethylbenzene catabolism. Archives of Microbiology, 176(1-2), 129-135. doi:10.1007/s002030100303 es_ES
dc.description.references Corma, A., Fornés, V., Jordá, J. L., Rey, F., Fernandez-Lafuente, R., Guisan, J. M., & Mateo, C. (2001). Electrostatic and covalent immobilisation of enzymes on ITQ-6 delaminated zeolitic materials. Chemical Communications, (5), 419-420. doi:10.1039/b009232k es_ES
dc.description.references Camblor, M. A., Corma, A., Mifsud, A., Pérez-Pariente, J., & Valencia, S. (1997). Synthesis of nanocrystalline zeolite beta in the absence of alkali metal cations. Progress in Zeolite and Microporous Materials, Preceedings of the 11th International Zeolite Conference, 341-348. doi:10.1016/s0167-2991(97)80574-5 es_ES
dc.description.references Blasco, T., Camblor, M. A., Corma, A., Esteve, P., Guil, J. M., Martínez, A., … Valencia, S. (1998). Direct Synthesis and Characterization of Hydrophobic Aluminum-Free Ti−Beta Zeolite. The Journal of Physical Chemistry B, 102(1), 75-88. doi:10.1021/jp973288w es_ES
dc.description.references ZHU, Y., CHUAH, G., & JAENICKE, S. (2004). Chemo- and regioselective Meerwein–Ponndorf–Verley and Oppenauer reactions catalyzed by Al-free Zr-zeolite beta. Journal of Catalysis, 227(1), 1-10. doi:10.1016/j.jcat.2004.05.037 es_ES
dc.description.references Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., … Klenk, D. C. (1985). Measurement of protein using bicinchoninic acid. Analytical Biochemistry, 150(1), 76-85. doi:10.1016/0003-2697(85)90442-7 es_ES
dc.description.references Cappello, V., Marchetti, L., Parlanti, P., Landi, S., Tonazzini, I., Cecchini, M., … Gemmi, M. (2016). Ultrastructural Characterization of the Lower Motor System in a Mouse Model of Krabbe Disease. Scientific Reports, 6(1). doi:10.1038/s41598-016-0001-8 es_ES
dc.description.references Perego, C. (1999). Experimental methods in catalytic kinetics. Catalysis Today, 52(2-3), 133-145. doi:10.1016/s0920-5861(99)00071-1 es_ES
dc.description.references Álvarez López, C. (2014). Determinación del punto isoeléctrico de las proteínas presentes en cuatro fuentes foliares: yuca (Manihot esculenta Crantz) variedades verónica y tai, jatropha (Jatropha curcas L.) y gmelina (Gmelina arbórea). Prospectiva, 12(1), 30. doi:10.15665/rp.v12i1.148 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem