- -

Production of chiral alcohols from racemic mixtures by integrated heterogeneous chemoenzymatic catalysis in fixed bed continuous operation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Production of chiral alcohols from racemic mixtures by integrated heterogeneous chemoenzymatic catalysis in fixed bed continuous operation

Mostrar el registro completo del ítem

Carceller-Carceller, JM.; Mifsud, M.; Climent Olmedo, MJ.; Iborra Chornet, S.; Corma Canós, A. (2020). Production of chiral alcohols from racemic mixtures by integrated heterogeneous chemoenzymatic catalysis in fixed bed continuous operation. Green Chemistry. 22(9):2767-2777. https://doi.org/10.1039/c9gc04127c

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/168620

Ficheros en el ítem

Metadatos del ítem

Título: Production of chiral alcohols from racemic mixtures by integrated heterogeneous chemoenzymatic catalysis in fixed bed continuous operation
Autor: Carceller-Carceller, Jose Miguel Mifsud, Maria Climent Olmedo, María José Iborra Chornet, Sara Corma Canós, Avelino
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] Valuable chiral alcs. have been obtained from racemic mixts. with an integrated heterogeneous chemoenzymic catalyst in a two consecutive fixed catalytic bed continuous reactor system. In the first bed the racemic mixt. ...[+]
Derechos de uso: Reserva de todos los derechos
Fuente:
Green Chemistry. (issn: 1463-9262 )
DOI: 10.1039/c9gc04127c
Editorial:
The Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/c9gc04127c
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-097277-B-I00/ES/MEJORA DEL CONCEPTO DE BIORREFINERIA MEDIANTE IMPLEMENTACION DE NUEVOS PROCESOS CATALITICOS CON CATALIZADORES SOLIDOS DE METALES NO NOBLES PARA LA PRODUCCION DE BIOCOMPUESTOS/
info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/
Agradecimientos:
The research leading to these results has received funding from the Spanish Ministry of Science, Innovation and Universities through "Severo Ochoa" Excellence Programme (SEV-2016-0683) and the PGC2018-097277-B-100(MCIU/AEI/FEDER, ...[+]
Tipo: Artículo

References

R. A. Sheldon , Chirotechnology: Industrial synthesis of optically active compounds , Marcel Dekker, Inc. , New York , 1993

Okamoto, Y., & Ikai, T. (2008). Chiral HPLC for efficient resolution of enantiomers. Chemical Society Reviews, 37(12), 2593. doi:10.1039/b808881k

Xie, R., Chu, L.-Y., & Deng, J.-G. (2008). Membranes and membrane processes for chiral resolution. Chemical Society Reviews, 37(6), 1243. doi:10.1039/b713350b [+]
R. A. Sheldon , Chirotechnology: Industrial synthesis of optically active compounds , Marcel Dekker, Inc. , New York , 1993

Okamoto, Y., & Ikai, T. (2008). Chiral HPLC for efficient resolution of enantiomers. Chemical Society Reviews, 37(12), 2593. doi:10.1039/b808881k

Xie, R., Chu, L.-Y., & Deng, J.-G. (2008). Membranes and membrane processes for chiral resolution. Chemical Society Reviews, 37(6), 1243. doi:10.1039/b713350b

Nie, Y., Xu, Y., Qing Mu, X., Tang, Y., Jiang, J., & Hao Sun, Z. (2005). High-yield conversion of (R)-2-octanol from the corresponding racemate by stereoinversion using Candida rugosa. Biotechnology Letters, 27(1), 23-26. doi:10.1007/s10529-004-6310-1

Liese, A., Zelinski, T., Kula, M.-R., Kierkels, H., Karutz, M., Kragl, U., & Wandrey, C. (1998). A novel reactor concept for the enzymatic reduction of poorly soluble ketones. Journal of Molecular Catalysis B: Enzymatic, 4(1-2), 91-99. doi:10.1016/s1381-1177(97)00025-8

Pociecha, D., Glogarová, M., Gorecka, E., & Mieczkowski, J. (2000). Behavior of frustrated phase in ferroelectric and antiferroelectric liquid crystalline mixtures. Physical Review E, 61(6), 6674-6677. doi:10.1103/physreve.61.6674

Xue, L., Zhou, D.-J., Tang, L., Ji, X.-F., Huang, M.-Y., & Jiang, Y.-Y. (2004). The asymmetric hydration of 1-octene to (S)-(+)-2-octanol with a biopolymer–metal complex, silica-supported chitosan–cobalt complex. Reactive and Functional Polymers, 58(2), 117-121. doi:10.1016/j.reactfunctpolym.2003.10.003

Wu, Z., Li, X., Li, F., Yue, H., He, C., Xie, F., & Wang, Z. (2014). Enantioselective transesterification of (R,S)-2-pentanol catalyzed by a new flower-like nanobioreactor. RSC Adv., 4(64), 33998-34002. doi:10.1039/c4ra04431b

Rachwalski, M., Vermue, N., & Rutjes, F. P. J. T. (2013). Recent advances in enzymatic and chemical deracemisation of racemic compounds. Chemical Society Reviews, 42(24), 9268. doi:10.1039/c3cs60175g

Bakker, M., Spruijt, A. ., van Rantwijk, F., & Sheldon, R. . (2000). Highly enantioselective aminoacylase-catalyzed transesterification of secondary alcohols. Tetrahedron: Asymmetry, 11(8), 1801-1808. doi:10.1016/s0957-4166(00)00118-x

Kim, C., Lee, J., Cho, J., Oh, Y., Choi, Y. K., Choi, E., … Kim, M.-J. (2013). Kinetic and Dynamic Kinetic Resolution of Secondary Alcohols with Ionic-Surfactant-Coated Burkholderia cepacia Lipase: Substrate Scope and Enantioselectivity. The Journal of Organic Chemistry, 78(6), 2571-2578. doi:10.1021/jo3027627

Lee, J. H., Han, K., Kim, M., & Park, J. (2010). Chemoenzymatic Dynamic Kinetic Resolution of Alcohols and Amines. European Journal of Organic Chemistry, 2010(6), 999-1015. doi:10.1002/ejoc.200900935

Parvulescu, A., Janssens, J., Vanderleyden, J., & De Vos, D. (2010). Heterogeneous Catalysts for Racemization and Dynamic Kinetic Resolution of Amines and Secondary Alcohols. Topics in Catalysis, 53(13-14), 931-941. doi:10.1007/s11244-010-9512-x

Verho, O., & Bäckvall, J.-E. (2015). Chemoenzymatic Dynamic Kinetic Resolution: A Powerful Tool for the Preparation of Enantiomerically Pure Alcohols and Amines. Journal of the American Chemical Society, 137(12), 3996-4009. doi:10.1021/jacs.5b01031

Gruber, C. C., Lavandera, I., Faber, K., & Kroutil, W. (2006). From a Racemate to a Single Enantiomer: Deracemization by Stereoinversion. Advanced Synthesis & Catalysis, 348(14), 1789-1805. doi:10.1002/adsc.200606158

Voss, C. V., Gruber, C. C., Faber, K., Knaus, T., Macheroux, P., & Kroutil, W. (2008). Orchestration of Concurrent Oxidation and Reduction Cycles for Stereoinversion and Deracemisation of sec-Alcohols. Journal of the American Chemical Society, 130(42), 13969-13972. doi:10.1021/ja804816a

Díaz-Rodríguez, A., Ríos-Lombardía, N., Sattler, J. H., Lavandera, I., Gotor-Fernández, V., Kroutil, W., & Gotor, V. (2015). Deracemisation of profenol core by combining laccase/TEMPO-mediated oxidation and alcohol dehydrogenase-catalysed dynamic kinetic resolution. Catalysis Science & Technology, 5(3), 1443-1446. doi:10.1039/c4cy01351d

Kędziora, K., Díaz-Rodríguez, A., Lavandera, I., Gotor-Fernández, V., & Gotor, V. (2014). Laccase/TEMPO-mediated system for the thermodynamically disfavored oxidation of 2,2-dihalo-1-phenylethanol derivatives. Green Chemistry, 16(5), 2448. doi:10.1039/c4gc00066h

Liardo, E., Ríos-Lombardía, N., Morís, F., González-Sabín, J., & Rebolledo, F. (2018). A Straightforward Deracemization of sec -Alcohols Combining Organocatalytic Oxidation and Biocatalytic Reduction. European Journal of Organic Chemistry, 2018(23), 3031-3035. doi:10.1002/ejoc.201800569

Méndez-Sánchez, D., Mangas-Sánchez, J., Lavandera, I., Gotor, V., & Gotor-Fernández, V. (2015). Chemoenzymatic Deracemization of Secondary Alcohols by using a TEMPO-Iodine-Alcohol Dehydrogenase System. ChemCatChem, 7(24), 4016-4020. doi:10.1002/cctc.201500816

Gröger, H., & Hummel, W. (2014). Combining the ‘two worlds’ of chemocatalysis and biocatalysis towards multi-step one-pot processes in aqueous media. Current Opinion in Chemical Biology, 19, 171-179. doi:10.1016/j.cbpa.2014.03.002

Corma, A. (2016). Heterogeneous Catalysis: Understanding for Designing, and Designing for Applications. Angewandte Chemie International Edition, 55(21), 6112-6113. doi:10.1002/anie.201601231

Kunkeler, P. J., Zuurdeeg, B. J., van der Waal, J. C., van Bokhoven, J. A., Koningsberger, D. C., & van Bekkum, H. (1998). Zeolite Beta: The Relationship between Calcination Procedure, Aluminum Configuration, and Lewis Acidity. Journal of Catalysis, 180(2), 234-244. doi:10.1006/jcat.1998.2273

Van der Waal, J. C., Creyghton, E. J., Kunkeler, P. J., Tan, K., & van Bekkum, H. (1997). Topics In Catalysis, 4(3/4), 261-268. doi:10.1023/a:1019160827175

Creyghton, E. ., Ganeshie, S. ., Downing, R. ., & van Bekkum, H. (1997). Stereoselective Meerwein–Ponndorf–Verley and Oppenauer reactions catalysed by zeolite BEA1Communication presented at the First Francqui Colloquium, Brussels, 19–20 February 1996.1. Journal of Molecular Catalysis A: Chemical, 115(3), 457-472. doi:10.1016/s1381-1169(96)00351-2

Van der Waal, J. C., Tan, K., & van Bekkum, H. (1996). Zeolite titanium beta: a selective and water resistant catalyst in Meerwein-Ponndorf-Verley-Oppenauer reactions. Catalysis Letters, 41(1-2), 63-67. doi:10.1007/bf00811714

Corma, A., Domine, M. E., Nemeth, L., & Valencia, S. (2002). Al-Free Sn-Beta Zeolite as a Catalyst for the Selective Reduction of Carbonyl Compounds (Meerwein−Ponndorf−Verley Reaction). Journal of the American Chemical Society, 124(13), 3194-3195. doi:10.1021/ja012297m

Corma, A. (2003). Water-resistant solid Lewis acid catalysts: Meerwein–Ponndorf–Verley and Oppenauer reactions catalyzed by tin-beta zeolite. Journal of Catalysis, 215(2), 294-304. doi:10.1016/s0021-9517(03)00014-9

Boronat, M., Corma, A., & Renz, M. (2006). Mechanism of the Meerwein−Ponndorf−Verley−Oppenauer (MPVO) Redox Equilibrium on Sn− and Zr−Beta Zeolite Catalysts. The Journal of Physical Chemistry B, 110(42), 21168-21174. doi:10.1021/jp063249x

Boronat, M., Corma, A., Renz, M., & Viruela, P. M. (2006). Predicting the Activity of Single Isolated Lewis Acid Sites in Solid Catalysts. Chemistry - A European Journal, 12(27), 7067-7077. doi:10.1002/chem.200600478

Hussain, W., Pollard, D. J., Truppo, M., & Lye, G. J. (2008). Enzymatic ketone reductions with co-factor recycling: Improved reactions with ionic liquid co-solvents. Journal of Molecular Catalysis B: Enzymatic, 55(1-2), 19-29. doi:10.1016/j.molcatb.2008.01.006

Tschaen, D. M., Abramson, L., Cai, D., Desmond, R., Dolling, U.-H., Frey, L., … Verhoeven, T. R. (1995). Asymmetric Synthesis of MK-0499. The Journal of Organic Chemistry, 60(14), 4324-4330. doi:10.1021/jo00119a008

KEINAN, E., SETH, K. K., & LAMED, R. (1987). Synthetic Applications of Alcohol-Dehydrogenase from Thermoanaerobium brockii. Annals of the New York Academy of Sciences, 501(1 Enzyme Engine), 130-149. doi:10.1111/j.1749-6632.1987.tb45698.x

Hummel, W. (1990). Reduction of acetophenone to R(+)-phenylethanol by a new alcohol dehydrogenase from Lactobacillus kefir. Applied Microbiology and Biotechnology, 34(1). doi:10.1007/bf00170916

Temiño, D. M.-R. D., Hartmeier, W., & Ansorge-Schumacher, M. B. (2005). Entrapment of the alcohol dehydrogenase from Lactobacillus kefir in polyvinyl alcohol for the synthesis of chiral hydrophobic alcohols in organic solvents. Enzyme and Microbial Technology, 36(1), 3-9. doi:10.1016/j.enzmictec.2004.01.013

L. Cao , Carrier-bound Immobilized Enzymes: Principles, Application and Design , Wiley-VCH , 2006

K. Faber , Biotransformations in Organic Chemistry , Springer B , New York , 1996

Benítez-Mateos, A. I., Contente, M. L., Velasco-Lozano, S., Paradisi, F., & López-Gallego, F. (2018). Self-Sufficient Flow-Biocatalysis by Coimmobilization of Pyridoxal 5′-Phosphate and ω-Transaminases onto Porous Carriers. ACS Sustainable Chemistry & Engineering, 6(10), 13151-13159. doi:10.1021/acssuschemeng.8b02672

Velasco‐Lozano, S., Benítez‐Mateos, A. I., & López‐Gallego, F. (2016). Co‐immobilized Phosphorylated Cofactors and Enzymes as Self‐Sufficient Heterogeneous Biocatalysts for Chemical Processes. Angewandte Chemie International Edition, 56(3), 771-775. doi:10.1002/anie.201609758

DiCosimo, R., McAuliffe, J., Poulose, A. J., & Bohlmann, G. (2013). Industrial use of immobilized enzymes. Chemical Society Reviews, 42(15), 6437. doi:10.1039/c3cs35506c

Benítez-Mateos, A. I., San Sebastian, E., Ríos-Lombardía, N., Morís, F., González-Sabín, J., & López-Gallego, F. (2017). Asymmetric Reduction of Prochiral Ketones by Using Self-Sufficient Heterogeneous Biocatalysts Based on NADPH-Dependent Ketoreductases. Chemistry - A European Journal, 23(66), 16843-16852. doi:10.1002/chem.201703475

Bolivar, J. M., Wilson, L., Ferrarotti, S. A., Guisán, J. M., Fernández-Lafuente, R., & Mateo, C. (2006). Improvement of the stability of alcohol dehydrogenase by covalent immobilization on glyoxyl-agarose. Journal of Biotechnology, 125(1), 85-94. doi:10.1016/j.jbiotec.2006.01.028

Xu, S., Lu, Y., Jiang, Z., & Wu, H. (2006). Silica nanotubes-doped alginate gel for yeast alcohol dehydrogenase immobilization. Journal of Molecular Catalysis B: Enzymatic, 43(1-4), 68-73. doi:10.1016/j.molcatb.2006.06.026

Shakir, M., Nasir, Z., Khan, M. S., Lutfullah, Alam, M. F., Younus, H., & Al-Resayes, S. I. (2015). Study on immobilization of yeast alcohol dehydrogenase on nanocrystalline Ni-Co ferrites as magnetic support. International Journal of Biological Macromolecules, 72, 1196-1204. doi:10.1016/j.ijbiomac.2014.10.045

Jiang, X.-P., Lu, T.-T., Liu, C.-H., Ling, X.-M., Zhuang, M.-Y., Zhang, J.-X., & Zhang, Y.-W. (2016). Immobilization of dehydrogenase onto epoxy-functionalized nanoparticles for synthesis of (R)-mandelic acid. International Journal of Biological Macromolecules, 88, 9-17. doi:10.1016/j.ijbiomac.2016.03.031

Alam, M. F., Laskar, A. A., Zubair, M., Baig, U., & Younus, H. (2015). Immobilization of yeast alcohol dehydrogenase on polyaniline coated silver nanoparticles formed by green synthesis. Journal of Molecular Catalysis B: Enzymatic, 119, 78-84. doi:10.1016/j.molcatb.2015.06.004

Liu, L., Yu, J., & Chen, X. (2015). Enhanced Stability and Reusability of Alcohol Dehydrogenase Covalently Immobilized on Magnetic Graphene Oxide Nanocomposites. Journal of Nanoscience and Nanotechnology, 15(2), 1213-1220. doi:10.1166/jnn.2015.9024

Dreifke, M., Brieler, F. J., & Fröba, M. (2017). Immobilization of Alcohol Dehydrogenase from E. coli onto Mesoporous Silica for Application as a Cofactor Recycling System. ChemCatChem, 9(7), 1197-1210. doi:10.1002/cctc.201601288

Ghannadi, S., Abdizadeh, H., Miroliaei, M., & Saboury, A. A. (2019). Immobilization of Alcohol Dehydrogenase on Titania Nanoparticles To Enhance Enzyme Stability and Remove Substrate Inhibition in the Reaction of Formaldehyde to Methanol. Industrial & Engineering Chemistry Research, 58(23), 9844-9854. doi:10.1021/acs.iecr.9b01370

Corma, A., Fornes, V., Pergher, S. B., Maesen, T. L. M., & Buglass, J. G. (1998). Delaminated zeolite precursors as selective acidic catalysts. Nature, 396(6709), 353-356. doi:10.1038/24592

Gallego, E. M., Portilla, M. T., Paris, C., León-Escamilla, A., Boronat, M., Moliner, M., & Corma, A. (2017). «Ab initio» synthesis of zeolites for preestablished catalytic reactions. Science, 355(6329), 1051-1054. doi:10.1126/science.aal0121

Margarit, V. J., Díaz-Rey, M. R., Navarro, M. T., Martínez, C., & Corma, A. (2018). Direct Synthesis of Nano-Ferrierite along the 10-Ring-Channel Direction Boosts Their Catalytic Behavior. Angewandte Chemie International Edition, 57(13), 3459-3463. doi:10.1002/anie.201711418

Luo, H. Y., Michaelis, V. K., Hodges, S., Griffin, R. G., & Román-Leshkov, Y. (2015). One-pot synthesis of MWW zeolite nanosheets using a rationally designed organic structure-directing agent. Chemical Science, 6(11), 6320-6324. doi:10.1039/c5sc01912e

Corma, A., Fornes, V., & Rey, F. (2002). Delaminated Zeolites: An Efficient Support for Enzymes. Advanced Materials, 14(1), 71-74. doi:10.1002/1521-4095(20020104)14:1<71::aid-adma71>3.0.co;2-w

Sheldon, R. A., & van Pelt, S. (2013). Enzyme immobilisation in biocatalysis: why, what and how. Chem. Soc. Rev., 42(15), 6223-6235. doi:10.1039/c3cs60075k

Thiel, D., Doknić, D., & Deska, J. (2014). Enzymatic aerobic ring rearrangement of optically active furylcarbinols. Nature Communications, 5(1). doi:10.1038/ncomms6278

Kniemeyer, O., & Heider, J. (2001). ( S )-1-Phenylethanol dehydrogenase of Azoarcus sp. strain EbN1, an enzyme of anaerobic ethylbenzene catabolism. Archives of Microbiology, 176(1-2), 129-135. doi:10.1007/s002030100303

Corma, A., Fornés, V., Jordá, J. L., Rey, F., Fernandez-Lafuente, R., Guisan, J. M., & Mateo, C. (2001). Electrostatic and covalent immobilisation of enzymes on ITQ-6 delaminated zeolitic materials. Chemical Communications, (5), 419-420. doi:10.1039/b009232k

Camblor, M. A., Corma, A., Mifsud, A., Pérez-Pariente, J., & Valencia, S. (1997). Synthesis of nanocrystalline zeolite beta in the absence of alkali metal cations. Progress in Zeolite and Microporous Materials, Preceedings of the 11th International Zeolite Conference, 341-348. doi:10.1016/s0167-2991(97)80574-5

Blasco, T., Camblor, M. A., Corma, A., Esteve, P., Guil, J. M., Martínez, A., … Valencia, S. (1998). Direct Synthesis and Characterization of Hydrophobic Aluminum-Free Ti−Beta Zeolite. The Journal of Physical Chemistry B, 102(1), 75-88. doi:10.1021/jp973288w

ZHU, Y., CHUAH, G., & JAENICKE, S. (2004). Chemo- and regioselective Meerwein–Ponndorf–Verley and Oppenauer reactions catalyzed by Al-free Zr-zeolite beta. Journal of Catalysis, 227(1), 1-10. doi:10.1016/j.jcat.2004.05.037

Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., … Klenk, D. C. (1985). Measurement of protein using bicinchoninic acid. Analytical Biochemistry, 150(1), 76-85. doi:10.1016/0003-2697(85)90442-7

Cappello, V., Marchetti, L., Parlanti, P., Landi, S., Tonazzini, I., Cecchini, M., … Gemmi, M. (2016). Ultrastructural Characterization of the Lower Motor System in a Mouse Model of Krabbe Disease. Scientific Reports, 6(1). doi:10.1038/s41598-016-0001-8

Perego, C. (1999). Experimental methods in catalytic kinetics. Catalysis Today, 52(2-3), 133-145. doi:10.1016/s0920-5861(99)00071-1

Álvarez López, C. (2014). Determinación del punto isoeléctrico de las proteínas presentes en cuatro fuentes foliares: yuca (Manihot esculenta Crantz) variedades verónica y tai, jatropha (Jatropha curcas L.) y gmelina (Gmelina arbórea). Prospectiva, 12(1), 30. doi:10.15665/rp.v12i1.148

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem