Faostat 2018 http://www.fao.org/
Jenkins, J. A. The origin of the cultivated tomato. Econ. Bot. 2, 379–392 (1948).
Blanca, J. et al. Variation revealed by SNP genotyping and morphology provides insight into the origin of the tomato. PLoS ONE 7, e48198 (2012).
[+]
Faostat 2018 http://www.fao.org/
Jenkins, J. A. The origin of the cultivated tomato. Econ. Bot. 2, 379–392 (1948).
Blanca, J. et al. Variation revealed by SNP genotyping and morphology provides insight into the origin of the tomato. PLoS ONE 7, e48198 (2012).
Razifard, H. et al. Genomic evidence for complex domestication history of the cultivated tomato in Latin America. Mol. Biol. Evol. 37, 1118–1132 (2020).
Bauchet, G. & Causse, M., Genetic diversity in tomato (Solanum lycopersicum) and its wild relatives. In Genetic Diversity in Plants (INTECH Open Access Publisher, 2012).
Bai, Y. & Lindhout, P. Domestication and breeding of tomatoes: what have we gained and what can we gain in the future? Ann. Bot. 100, 1085–1094 (2007).
Dwivedi, S., Goldman, I. & Ortiz, R. Pursuing the potential of heirloom cultivars to improve adaptation, nutritional, and culinary features of food crops. Agronomy 9, 441 (2019).
Casañas, F., Simó, J., Casals, J. & Prohens, J. Toward an evolved concept of landrace. Front. Plant Sci. 8, 145 (2017).
Klee, H. J. & Tieman, D. M. The genetics of fruit flavour preferences. Nat. Rev. Genet. 19, 347–356 (2018).
Conesa, M. À., Fullana-Pericàs, M., Granell, A. & Galmés, J. Mediterranean long shelf-life landraces: an untapped genetic resource for tomato improvement. Front. Plant Sci. 10, 1651 (2020).
Casals, J., Martí, R., Casañas, F. & Cebolla, J. Sugar-and-acid profile of Penjar tomatoes and its evolution during storage. Sci. Agric. 72, 314–321 (2015).
Casals, J. et al. Genetic basis of long shelf life and variability into Penjar tomato. Genet. Resour. Crop Evol. 59, 219–229 (2012).
van Berloo, R. et al. Diversity and linkage disequilibrium analysis within a selected set of cultivated tomatoes. Theor. Appl. Genet. 117, 89–101(2008).
Robbins, M. D. et al. Mapping and linkage disequilibrium analysis with a genome-wide collection of SNPs that detect polymorphism in cultivated tomato. J. Exp. Bot. 62, 1831–1845 (2011).
Sim, S. C., Robbins, M. D., Deynze, A. V., Michel, A. P. & Francis, D. M. Population structure and genetic differentiation associated with breeding history and selection in tomato (Solanum lycopersicum L.). Heredity 106, 927–935 (2011).
Corrado, G., Piffanelli, P., Caramante, M., Coppola, M. & Rao, R. SNP genotyping reveals genetic diversity between cultivated landraces and contemporary varieties of tomato. BMC Genomics 14, 835 (2013).
Corrado, G., Caramante, M., Piffanelli, P. & Rao, R. Genetic diversity in Italian tomato landraces: implications for the development of a core collection. Sci. Hortic. 168, 138–144 (2014).
Sim, S. C. et al. High-density SNP genotyping of tomato (Solanum lycopersicum L.) reveals patterns of genetic variation due to breeding. PloS ONE 7, e45520 (2012).
Sacco, A. et al. Exploring a tomato landraces collection for fruit-related traits by the aid of a high-throughput genomic platform. PLoS ONE 10, e0137139 (2015).
Tranchida-Lombardo, V. et al. Genetic diversity in a collection of Italian long storage tomato landraces as revealed by SNP markers array. Plant Biosyst. 153, 288–297 (2019).
Pérez de, Castro et al. Application of genomic tools in plant breeding. Curr. Genomics 13, 179–195 (2012).
Peterson, B. K. et al. Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE 7, e37135 (2012).
Shirasawa, K., Hirakawa, H. & Isobe, S. Analytical workflow of double-digest restriction site-associated DNA sequencing based on empirical and in silico optimization in tomato. DNA Res. 23, 145–153 (2016).
Yang, G. et al. Development of a universal and simplified ddRAD library preparation approach for SNP discovery and genotyping in angiosperm plants. Plant Met. 12, 39 (2016).
Okada, Y. et al. Genome-wide association studies (GWAS) for yield and weevil resistance in sweet potato (Ipomoea batatas (L.) Lam. Plant Cell Rep. 38, 1383–1392 (2019).
The Tomato Genome Consortium. The tomato gene sequence provides insights into fleshy fruit evolution. Nature 485, 635–641 (2012).
Hosmani, P. S. et al. An improved de novo assembly and annotation of the tomato reference genome using single-molecule sequencing, Hi-C proximity ligation and optical maps. Preprint at https://www.biorxiv.org/content/10.1101/767764v1 (2020).
Aguirre, N. et al. Optimizing ddRADseq in non-model species: a case study in Eucalyptus dunnii maiden. Agronomy 9, 484 (2019).
Catchen, J., Hohenlohe, P., Bassham, S., Amores, A. & Cresko, W. Stacks: an analysis tool set for population genomics. Mol. Ecol. 22, 3124–3140 (2013).
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
Weir, B. S. Genetic Data Analysis II (Sinauer Associates Inc., Sunderland, MA, 1996).
Botstein, D., White, R. L., Skolnick, M. & Davis, R. W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32, 314–331 (1980).
Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).
Gao, X. & Starmer, J. D. AWclust: point‐and‐click software for non‐parametric population structure analysis. BMC Bioinformatics 9, 77 (2008).
Liu, K. & Muse, S. V. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21, 2128–2129 (2005).
RStudio Team RStudio: Integrated Development for R (RStudio, Inc., Boston, MA, 2016).
De Beukelaer, H., Smýkal, P., Davenport, G. F., Fack, V. & Core Hunter, I. I. fast core subset selection based on multiple genetic diversity measures using Mixed Replica search. BMC Bioinforma. 13, 312 (2012).
Schwacke, R. et al. MapMan4: a refined protein classification and annotation framework applicable to multi-omics data analysis. Mol. Plant 12, 879–892 (2019).
Kong, Z. et al. Kinesin-4 functions in vesicular transport on cortical microtubules and regulates cell wall mechanics during cell elongation in plants. Mol. Plant 8, 1011–1023 (2015).
Wang, X., Cai, X., Xu, C., Wang, Q. & Dai, S. Drought-responsive mechanisms in plant leaves revealed by proteomics. Int. J. Mol. Sci. 17, 1706 (2016).
Xu, X., Walter, W. J., Liu, Q., Machens, I. & Nick, P. A rice class-XIV kinesin enters the nucleus in response to cold. Sci. Rep. 8, 3588 (2018).
Opiyo, S. O. & Moriyama, E. N. Mining Cytochrome b561 proteins from plant genomes. Int. J. Bioinform. Res. Appl. 6, 209–221 (2010).
Lee, S. et al. The small GTPase, nucleolar GTP-binding protein 1 (NOG1), has a novel role in plant innate immunity. Sci. Rep. 7, 9260 (2017).
Usadel, B. et al. Extension of the visualization tool MapMan to allow statistical analysis of arrays, display of corresponding genes, and comparison with known responses. Plant Physiol. 138, 1195–1204 (2005).
Sáez-Vásquez, J. & Delseny, M. Ribosome biogenesis in plants: from functional 45S ribosomal DNA organization to ribosome assembly factors. Plant Cell 31, 1945–1967 (2019).
Mareri, L., Romi, M. & Cai, G. Arabinogalactan proteins: actors or spectators during abiotic and biotic stress in plants? Plant Biosyst. 153, 173–185 (2018).
Zhong, S., Chang, C. in Ethylene signalling: the CTR1 protein kinase, Vol. 44 (eds Oxford, UK: Wiley-Blackwell) ch. 6 (Annual Plant Reviews, 2012).
Suza, W. P. & Staswick, P. E. The role of JAR1 in jasmonoyl-L-isoleucine production in Arabidopsis wound response. Planta 227, 1221–1232 (2008).
Barry, C. S. & Giovannoni, J. J. Ethylene and fruit ripening. J. Plant Growth Regul. 26, 143–159 (2007).
Giovannoni, J. J. Fruit ripening mutants yield insights into ripening control. Curr. Opin. Plant Biol. 10, 283–289 (2007).
Wang, R. et al. The rin, nor and Cnr spontaneous mutations inhibit tomato fruit ripening in additive and epistatic manners. Plant Sci. 294, 110436 (2020).
Albrecht, E., Escobar, M. & Chetelat, R. Genetic diversity and population structure in the tomato-like nightshades Solanum lycopersicoides and S. sitiens. Ann. Bot. 105, 535–554 (2010).
Xu, J. et al. Phenotypic diversity and association mapping for fruit quality traits in cultivated tomato and related species. Theor. Appl. Genet. 126, 567–581 (2013).
Bauchet, G. et al. Use of modern tomato breeding germplasm for deciphering the genetic control of agronomical traits by Genome Wide Association study. Theor. Appl. Genet. 130, 875–889 (2017).
Rothan, C., Diouf, I. & Causse, M. Trait discovery and editing in tomato. Plant J. 97, 73–90 (2018).
Wang, T. et al. Analysis of genetic diversity and population structure in a tomato (Solanum lycopersicum L.) germplasm collection based on single nucleotide polymorphism. Genet. Mol. Res. 15, 1–12 (2016).
Massaretto, I. L. et al. Recovering tomato landraces to simultaneously improve fruit yield and nutritional quality against salt stress. Front. Plant Sci. 9, 1778 (2018).
Aflitos, S. et al. Exploring genetic variation in the tomato (Solanum section Lycopersicon) clade by whole-genome sequencing. Plant J. 80, 136–148 (2014).
Leimu, R., Mutikainen, P. I. A., Koricheva, J. & Fischer, M. How general are positive relationships between plant population size, fitness and genetic variation? J. Ecol. 94, 942–952 (2006).
Mackay, I. & Powell, W. Methods for linkage disequilibrium mapping in crops. Trends Plant Sci. 12, 57–63 (2007).
Ersoz, E. S., Yu, J., Buckler, E. S. Applications of linkage disequilibrium and association mapping in Genomics-assisted crop improvement, Vol. 1 (eds. Varshney R. K., Tuberosa R.) (Dordrecht, Springer, 2008).
D’Agostino, N. & Tripodi, P. NGS-based genotyping, high-throughput phenotyping and genome-wide association studies laid the foundations for next-generation breeding in horticultural crops. Diversity 9, 38 (2017).
Kopeliovitch, E., Rabinowitch, H. D., Mizrahi, Y. & Kedar, N. Mode of inheritance of Alcobaca, a tomato fruit-ripening mutant. Euphytica 30, 223–225 (1981).
Lobo, M., Bassett, M. J. & Hannah, L. C. Inheritance and characterization of the fruit ripening mutation in ‘alcobaca’ tomato. J. Am. Soc. Hortic. Sci. 109, 741–745 (1984).
Mutschler, M., Guttieri, M., Kinzer, S., Grierson, D. & Tucker, G. Changes in ripening-related processes in tomato conditioned by the alc mutant. Theor. Appl. Genet. 76, 285–292 (1988).
Conesa, M. A. et al. The postharvest tomato fruit quality of long shelf-life Mediterranean landraces is substantially influenced by irrigation regimes. Postharvest Biol. Technol. 93, 114–121 (2014).
Bota, J. et al. Characterization of a landrace collection for Tomàtiga de Ramellet (Solanum lycopersicum L.) from the Balearic Islands. Genet. Resour. Crop Evol. 61, 1131–1146 (2014).
Kumar, R., Tamboli, V., Sharma, R. & Sreelakshmi, Y. NAC-NOR mutations in tomato Penjar accessions attenuate multiple metabolic processes and prolong the fruit shelf life. Food Chem. 259, 234–244 (2018).
Cho, Y. H. & Yoo, S. D. Novel connections and gaps in ethylene signaling from the ER membrane to the nucleus. Front. Plant Sci. 5, 733 (2015).
Ju, C. et al. CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis. Proc. Natl. Acad. Sci. USA 109, 19486–19491 (2012).
Achard, P. et al. Integration of plant responses to environmentally activated phytohormonal signals. Science 311, 91–94 (2006).
Morello, L., Giani, S., Troina, F. & Breviario, D. Testing the IMEter on rice introns and other aspects of intron-mediated enhancement of gene expression. J. Exp. Bot. 62, 533–544 (2011).
Rose, A. B., Carter, A., Korf, I. & Kojima, N. Intron sequences that stimulate gene expression in Arabidopsis. Plant Mol. Biol. 92, 337–346 (2016).
Moore, S., Vrebalov, J., Payton, P. & Giovannoni, J. J. Use of genomics tools to isolate key ripening genes and analyse fruit maturation in tomato. J. Exp. Bot. 53, 2023–2030 (2002).
Vrebalov, J. et al. A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus. Science 296, 343–346 (2002).
Zhou, J. L., Qiu, J. & Ye, Z. H. Alteration in secondary wall deposition by overexpression of the Fragile Fiber1 kinesin-like protein in Arabidopsis. J. Integr. Plant Biol. 49, 1235–1243 (2007).
Vallés, D. et al. A cysteine protease isolated from ripe fruits of Solanum granulosoleprosum (Solanaceae). Protein J. 27, 267 (2008).
Guerrero, F. D., Jones, J. T. & Mullet, J. E. Turgor-responsive gene transcription and RNA levels increase rapidly when pea shoots are wilted. Sequence and expression of three inducible genes. Plant Mol. Biol. 15, 11–26 (1990).
Yamaguchi-Shinozaki, K., Koizumi, M., Urao, S. & Shinozaki, K. Molecular cloning and characterization of 9 cDNAs for genes that are responsive to desiccation in Arabidopsis thaliana: sequence analysis of one cDNA clone that encodes a putative transmembrane channel protein. Plant Cell Physiol. 33, 217–224 (1992).
Koizumi, M., Yamaguchi-Shinozaki, K., Tsuji, H. & Shinozaki, K. Structure and expression of two genes that encode distinct drought-inducible cysteine proteinases in Arabidopsis thaliana. Gene 129, 175–182 (1993).
Krüger, J. et al. A tomato cysteine protease required for Cf-2-dependent disease resistance and suppression of autonecrosis. Science 296, 744–747 (2002).
Fan, Y., Yang, W., Yan, Q., Chen, C. & Li, J. Genome-wide identification and expression analysis of the protease inhibitor gene families in tomato. Genes 11, 1 (2020).
Noctor, G. & Foyer, C. H. Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev. Plant Physiol. 49, 249–279 (1998).
Mittler, R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7, 405–410 (2002).
Nanasato, Y., Akashi, K. & Yokota, A. Co-expression of cytochrome b561 and ascorbate oxidase in leaves of wild watermelon under drought and high light conditions. Plant Cell Physiol. 46, 1515–1524 (2005).
Feeley, E. M. et al. Galectin-3 directs antimicrobial guanylate binding proteins to vacuoles furnished with bacterial secretion systems. Proc. Natl. Acad. Sci. USA 114, E1698–E1706 (2017).
[-]