- -

Dynamic Modelling and Techno-Economic Assessment of a Compressed Heat Energy Storage System: Application in a 26-MW Wind Farm in Spain

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Dynamic Modelling and Techno-Economic Assessment of a Compressed Heat Energy Storage System: Application in a 26-MW Wind Farm in Spain

Show full item record

Sánchez Canales, V.; Payá-Herrero, J.; Corberán, JM.; Hassan, A. (2020). Dynamic Modelling and Techno-Economic Assessment of a Compressed Heat Energy Storage System: Application in a 26-MW Wind Farm in Spain. Energies. 13(18):1-18. https://doi.org/10.3390/en13184739

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/168720

Files in this item

Item Metadata

Title: Dynamic Modelling and Techno-Economic Assessment of a Compressed Heat Energy Storage System: Application in a 26-MW Wind Farm in Spain
Author: Sánchez Canales, V. Payá-Herrero, Jorge Corberán, José M. Hassan, Abdelrahman
UPV Unit: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Issued date:
Abstract:
[EN] One of the main challenges for a further integration of renewable energy sources in the electricity grid is the development of large-scale energy storage systems to overcome their intermittency. This paper presents ...[+]
Subjects: Thermal energy storage , High-temperature heat pump , Organic Rankine cycle , Transient modelling
Copyrigths: Reconocimiento (by)
Source:
Energies. (eissn: 1996-1073 )
DOI: 10.3390/en13184739
Publisher:
MDPI AG
Publisher version: https://doi.org/10.3390/en13184739
Project ID:
info:eu-repo/grantAgreement/EC/H2020/764042/EU/Compressed Heat Energy Storage for Energy from Renewable sources/
Thanks:
This work has been partially funded by the grant agreement No. 764042 (CHESTER project) of the European Union's Horizon 2020 research and innovation program.
Type: Artículo

References

Nikolaou, T., Stavrakakis, G. S., & Tsamoudalis, K. (2020). Modeling and Optimal Dimensioning of a Pumped Hydro Energy Storage System for the Exploitation of the Rejected Wind Energy in the Non-Interconnected Electrical Power System of the Crete Island, Greece. Energies, 13(11), 2705. doi:10.3390/en13112705

Shi, J., Yang, Y., & Deng, Z. (2009). A reliability growth model for 300 MW pumped-storage power units. Frontiers of Energy and Power Engineering in China, 3(3), 337-340. doi:10.1007/s11708-009-0032-y

Argyrou, M. C., Christodoulides, P., & Kalogirou, S. A. (2018). Energy storage for electricity generation and related processes: Technologies appraisal and grid scale applications. Renewable and Sustainable Energy Reviews, 94, 804-821. doi:10.1016/j.rser.2018.06.044 [+]
Nikolaou, T., Stavrakakis, G. S., & Tsamoudalis, K. (2020). Modeling and Optimal Dimensioning of a Pumped Hydro Energy Storage System for the Exploitation of the Rejected Wind Energy in the Non-Interconnected Electrical Power System of the Crete Island, Greece. Energies, 13(11), 2705. doi:10.3390/en13112705

Shi, J., Yang, Y., & Deng, Z. (2009). A reliability growth model for 300 MW pumped-storage power units. Frontiers of Energy and Power Engineering in China, 3(3), 337-340. doi:10.1007/s11708-009-0032-y

Argyrou, M. C., Christodoulides, P., & Kalogirou, S. A. (2018). Energy storage for electricity generation and related processes: Technologies appraisal and grid scale applications. Renewable and Sustainable Energy Reviews, 94, 804-821. doi:10.1016/j.rser.2018.06.044

Jockenhöfer, H., Steinmann, W.-D., & Bauer, D. (2018). Detailed numerical investigation of a pumped thermal energy storage with low temperature heat integration. Energy, 145, 665-676. doi:10.1016/j.energy.2017.12.087

Steinmann, W.-D. (2017). Thermo-mechanical concepts for bulk energy storage. Renewable and Sustainable Energy Reviews, 75, 205-219. doi:10.1016/j.rser.2016.10.065

Thess, A. (2013). Thermodynamic Efficiency of Pumped Heat Electricity Storage. Physical Review Letters, 111(11). doi:10.1103/physrevlett.111.110602

Guo, J., Cai, L., Chen, J., & Zhou, Y. (2016). Performance optimization and comparison of pumped thermal and pumped cryogenic electricity storage systems. Energy, 106, 260-269. doi:10.1016/j.energy.2016.03.053

Attonaty, K., Stouffs, P., Pouvreau, J., Oriol, J., & Deydier, A. (2019). Thermodynamic analysis of a 200 MWh electricity storage system based on high temperature thermal energy storage. Energy, 172, 1132-1143. doi:10.1016/j.energy.2019.01.153

Frate, G. F., Antonelli, M., & Desideri, U. (2017). A novel Pumped Thermal Electricity Storage (PTES) system with thermal integration. Applied Thermal Engineering, 121, 1051-1058. doi:10.1016/j.applthermaleng.2017.04.127

Mateu-Royo, C., Mota-Babiloni, A., Navarro-Esbrí, J., Peris, B., Molés, F., & Amat-Albuixech, M. (2019). Multi-objective optimization of a novel reversible High-Temperature Heat Pump-Organic Rankine Cycle (HTHP-ORC) for industrial low-grade waste heat recovery. Energy Conversion and Management, 197, 111908. doi:10.1016/j.enconman.2019.111908

Benato, A. (2017). Performance and cost evaluation of an innovative Pumped Thermal Electricity Storage power system. Energy, 138, 419-436. doi:10.1016/j.energy.2017.07.066

Benato, A., & Stoppato, A. (2019). Integrated Thermal Electricity Storage System: Energetic and cost performance. Energy Conversion and Management, 197, 111833. doi:10.1016/j.enconman.2019.111833

Maximov, S., Harrison, G., & Friedrich, D. (2019). Long Term Impact of Grid Level Energy Storage on Renewable Energy Penetration and Emissions in the Chilean Electric System. Energies, 12(6), 1070. doi:10.3390/en12061070

Steinmann, W. D. (2014). The CHEST (Compressed Heat Energy STorage) concept for facility scale thermo mechanical energy storage. Energy, 69, 543-552. doi:10.1016/j.energy.2014.03.049

Hu, B., Wu, D., Wang, L. W., & Wang, R. Z. (2017). Exergy analysis of R1234ze(Z) as high temperature heat pump working fluid with multi-stage compression. Frontiers in Energy, 11(4), 493-502. doi:10.1007/s11708-017-0510-6

He, Y.-L., Wang, R., Roskilly, A. P., & Li, P. (2017). Efficient use of waste heat and solar energy: Technologies of cooling, heating, power generation and heat transfer. Frontiers in Energy, 11(4), 411-413. doi:10.1007/s11708-017-0525-z

Hassan, A. H., O’Donoghue, L., Sánchez-Canales, V., Corberán, J. M., Payá, J., & Jockenhöfer, H. (2020). Thermodynamic analysis of high-temperature pumped thermal energy storage systems: Refrigerant selection, performance and limitations. Energy Reports, 6, 147-159. doi:10.1016/j.egyr.2020.05.010

Steinmann, W.-D., Bauer, D., Jockenhöfer, H., & Johnson, M. (2019). Pumped thermal energy storage (PTES) as smart sector-coupling technology for heat and electricity. Energy, 183, 185-190. doi:10.1016/j.energy.2019.06.058

Pereira da Cunha, J., & Eames, P. (2016). Thermal energy storage for low and medium temperature applications using phase change materials – A review. Applied Energy, 177, 227-238. doi:10.1016/j.apenergy.2016.05.097

Cecchinato, L. (2010). Part load efficiency of packaged air-cooled water chillers with inverter driven scroll compressors. Energy Conversion and Management, 51(7), 1500-1509. doi:10.1016/j.enconman.2010.02.008

The Turbocor Family of Compressors Model TT300, Danfoss TURBOCOR. Datasheetwww.turbocor.com,USA

Palkowski, C., Zottl, A., Malenkovic, I., & Simo, A. (2019). Fixing Efficiency Values by Unfixing Compressor Speed: Dynamic Test Method for Heat Pumps. Energies, 12(6), 1045. doi:10.3390/en12061045

Estadísticas del Sistema Eléctrico | Red Eléctrica de Españahttps://www.ree.es/es/estadisticas-del-sistema-electrico/3015/3001

OMIP Operador del Mercado Ibérico de Energía—Polo Portuguéshttps://www.omip.pt/

El Mercado de Restricciones Técnicashttp://mifacturadeluz.com/mercado-de-restricciones-tecnicas/

Puerto Escandón (España)—Parques eólicos—Acceso en línea—The Wind Powerhttps://www.thewindpower.net/windfarm_es_2253_puerto-escandon.php

Federico Bava DS D2.1 Case studies: User Requirements and Boundary Conditions Definition. CHESTERhttps://www.chester-project.eu/wp-content/uploads/2018/11/CHESTER_D2.1_Case-Studies_v5.0.pdf

Estado actual de la energía termosolar (CSP)—HELIONOTICIAShttp://helionoticias.es/estado-actual-de-la-energia-termosolar-csp/

Gallo, A. B., Simões-Moreira, J. R., Costa, H. K. M., Santos, M. M., & Moutinho dos Santos, E. (2016). Energy storage in the energy transition context: A technology review. Renewable and Sustainable Energy Reviews, 65, 800-822. doi:10.1016/j.rser.2016.07.028

Smallbone, A., Jülch, V., Wardle, R., & Roskilly, A. P. (2017). Levelised Cost of Storage for Pumped Heat Energy Storage in comparison with other energy storage technologies. Energy Conversion and Management, 152, 221-228. doi:10.1016/j.enconman.2017.09.047

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record