- -

Dynamic Modelling and Techno-Economic Assessment of a Compressed Heat Energy Storage System: Application in a 26-MW Wind Farm in Spain

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Dynamic Modelling and Techno-Economic Assessment of a Compressed Heat Energy Storage System: Application in a 26-MW Wind Farm in Spain

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sánchez Canales, V. es_ES
dc.contributor.author Payá-Herrero, Jorge es_ES
dc.contributor.author Corberán, José M. es_ES
dc.contributor.author Hassan, Abdelrahman es_ES
dc.date.accessioned 2021-07-03T03:31:06Z
dc.date.available 2021-07-03T03:31:06Z
dc.date.issued 2020-09 es_ES
dc.identifier.uri http://hdl.handle.net/10251/168720
dc.description.abstract [EN] One of the main challenges for a further integration of renewable energy sources in the electricity grid is the development of large-scale energy storage systems to overcome their intermittency. This paper presents the concept named CHEST (Compressed Heat Energy STorage), in which the excess electricity is employed to increase the temperature of a heat source by means of a high-temperature heat pump. This heat is stored in a combination of latent and sensible heat storage systems. Later, the stored heat is used to drive an organic Rankine cycle, and hereby to produce electricity when needed. A novel application of this storage system is presented by exploring its potential integration in the Spanish technical constraints electricity market. A detailed dynamic model of the proposed CHEST system was developed and applied to a case study of a 26-MW wind power plant in Spain. Different capacities of the storage system were assessed for the case under study. The results show that roundtrip efficiencies above 90% can be achieved in all the simulated scenarios and that the CHEST system can provide from 1% to 20% of the total energy contribution of the power plant, depending on its size. The CHEST concept could be economically feasible if its capital expenditure (CAPEX) ranges between 200 and 650 k€/MW es_ES
dc.description.sponsorship This work has been partially funded by the grant agreement No. 764042 (CHESTER project) of the European Union's Horizon 2020 research and innovation program. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Energies es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Thermal energy storage es_ES
dc.subject High-temperature heat pump es_ES
dc.subject Organic Rankine cycle es_ES
dc.subject Transient modelling es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Dynamic Modelling and Techno-Economic Assessment of a Compressed Heat Energy Storage System: Application in a 26-MW Wind Farm in Spain es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/en13184739 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/764042/EU/Compressed Heat Energy Storage for Energy from Renewable sources/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Sánchez Canales, V.; Payá-Herrero, J.; Corberán, JM.; Hassan, A. (2020). Dynamic Modelling and Techno-Economic Assessment of a Compressed Heat Energy Storage System: Application in a 26-MW Wind Farm in Spain. Energies. 13(18):1-18. https://doi.org/10.3390/en13184739 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/en13184739 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 18 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 18 es_ES
dc.identifier.eissn 1996-1073 es_ES
dc.relation.pasarela S\418123 es_ES
dc.contributor.funder European Commission es_ES
dc.description.references Nikolaou, T., Stavrakakis, G. S., & Tsamoudalis, K. (2020). Modeling and Optimal Dimensioning of a Pumped Hydro Energy Storage System for the Exploitation of the Rejected Wind Energy in the Non-Interconnected Electrical Power System of the Crete Island, Greece. Energies, 13(11), 2705. doi:10.3390/en13112705 es_ES
dc.description.references Shi, J., Yang, Y., & Deng, Z. (2009). A reliability growth model for 300 MW pumped-storage power units. Frontiers of Energy and Power Engineering in China, 3(3), 337-340. doi:10.1007/s11708-009-0032-y es_ES
dc.description.references Argyrou, M. C., Christodoulides, P., & Kalogirou, S. A. (2018). Energy storage for electricity generation and related processes: Technologies appraisal and grid scale applications. Renewable and Sustainable Energy Reviews, 94, 804-821. doi:10.1016/j.rser.2018.06.044 es_ES
dc.description.references Jockenhöfer, H., Steinmann, W.-D., & Bauer, D. (2018). Detailed numerical investigation of a pumped thermal energy storage with low temperature heat integration. Energy, 145, 665-676. doi:10.1016/j.energy.2017.12.087 es_ES
dc.description.references Steinmann, W.-D. (2017). Thermo-mechanical concepts for bulk energy storage. Renewable and Sustainable Energy Reviews, 75, 205-219. doi:10.1016/j.rser.2016.10.065 es_ES
dc.description.references Thess, A. (2013). Thermodynamic Efficiency of Pumped Heat Electricity Storage. Physical Review Letters, 111(11). doi:10.1103/physrevlett.111.110602 es_ES
dc.description.references Guo, J., Cai, L., Chen, J., & Zhou, Y. (2016). Performance optimization and comparison of pumped thermal and pumped cryogenic electricity storage systems. Energy, 106, 260-269. doi:10.1016/j.energy.2016.03.053 es_ES
dc.description.references Attonaty, K., Stouffs, P., Pouvreau, J., Oriol, J., & Deydier, A. (2019). Thermodynamic analysis of a 200 MWh electricity storage system based on high temperature thermal energy storage. Energy, 172, 1132-1143. doi:10.1016/j.energy.2019.01.153 es_ES
dc.description.references Frate, G. F., Antonelli, M., & Desideri, U. (2017). A novel Pumped Thermal Electricity Storage (PTES) system with thermal integration. Applied Thermal Engineering, 121, 1051-1058. doi:10.1016/j.applthermaleng.2017.04.127 es_ES
dc.description.references Mateu-Royo, C., Mota-Babiloni, A., Navarro-Esbrí, J., Peris, B., Molés, F., & Amat-Albuixech, M. (2019). Multi-objective optimization of a novel reversible High-Temperature Heat Pump-Organic Rankine Cycle (HTHP-ORC) for industrial low-grade waste heat recovery. Energy Conversion and Management, 197, 111908. doi:10.1016/j.enconman.2019.111908 es_ES
dc.description.references Benato, A. (2017). Performance and cost evaluation of an innovative Pumped Thermal Electricity Storage power system. Energy, 138, 419-436. doi:10.1016/j.energy.2017.07.066 es_ES
dc.description.references Benato, A., & Stoppato, A. (2019). Integrated Thermal Electricity Storage System: Energetic and cost performance. Energy Conversion and Management, 197, 111833. doi:10.1016/j.enconman.2019.111833 es_ES
dc.description.references Maximov, S., Harrison, G., & Friedrich, D. (2019). Long Term Impact of Grid Level Energy Storage on Renewable Energy Penetration and Emissions in the Chilean Electric System. Energies, 12(6), 1070. doi:10.3390/en12061070 es_ES
dc.description.references Steinmann, W. D. (2014). The CHEST (Compressed Heat Energy STorage) concept for facility scale thermo mechanical energy storage. Energy, 69, 543-552. doi:10.1016/j.energy.2014.03.049 es_ES
dc.description.references Hu, B., Wu, D., Wang, L. W., & Wang, R. Z. (2017). Exergy analysis of R1234ze(Z) as high temperature heat pump working fluid with multi-stage compression. Frontiers in Energy, 11(4), 493-502. doi:10.1007/s11708-017-0510-6 es_ES
dc.description.references He, Y.-L., Wang, R., Roskilly, A. P., & Li, P. (2017). Efficient use of waste heat and solar energy: Technologies of cooling, heating, power generation and heat transfer. Frontiers in Energy, 11(4), 411-413. doi:10.1007/s11708-017-0525-z es_ES
dc.description.references Hassan, A. H., O’Donoghue, L., Sánchez-Canales, V., Corberán, J. M., Payá, J., & Jockenhöfer, H. (2020). Thermodynamic analysis of high-temperature pumped thermal energy storage systems: Refrigerant selection, performance and limitations. Energy Reports, 6, 147-159. doi:10.1016/j.egyr.2020.05.010 es_ES
dc.description.references Steinmann, W.-D., Bauer, D., Jockenhöfer, H., & Johnson, M. (2019). Pumped thermal energy storage (PTES) as smart sector-coupling technology for heat and electricity. Energy, 183, 185-190. doi:10.1016/j.energy.2019.06.058 es_ES
dc.description.references Pereira da Cunha, J., & Eames, P. (2016). Thermal energy storage for low and medium temperature applications using phase change materials – A review. Applied Energy, 177, 227-238. doi:10.1016/j.apenergy.2016.05.097 es_ES
dc.description.references Cecchinato, L. (2010). Part load efficiency of packaged air-cooled water chillers with inverter driven scroll compressors. Energy Conversion and Management, 51(7), 1500-1509. doi:10.1016/j.enconman.2010.02.008 es_ES
dc.description.references The Turbocor Family of Compressors Model TT300, Danfoss TURBOCOR. Datasheetwww.turbocor.com,USA es_ES
dc.description.references Palkowski, C., Zottl, A., Malenkovic, I., & Simo, A. (2019). Fixing Efficiency Values by Unfixing Compressor Speed: Dynamic Test Method for Heat Pumps. Energies, 12(6), 1045. doi:10.3390/en12061045 es_ES
dc.description.references Estadísticas del Sistema Eléctrico | Red Eléctrica de Españahttps://www.ree.es/es/estadisticas-del-sistema-electrico/3015/3001 es_ES
dc.description.references OMIP Operador del Mercado Ibérico de Energía—Polo Portuguéshttps://www.omip.pt/ es_ES
dc.description.references El Mercado de Restricciones Técnicashttp://mifacturadeluz.com/mercado-de-restricciones-tecnicas/ es_ES
dc.description.references Puerto Escandón (España)—Parques eólicos—Acceso en línea—The Wind Powerhttps://www.thewindpower.net/windfarm_es_2253_puerto-escandon.php es_ES
dc.description.references Federico Bava DS D2.1 Case studies: User Requirements and Boundary Conditions Definition. CHESTERhttps://www.chester-project.eu/wp-content/uploads/2018/11/CHESTER_D2.1_Case-Studies_v5.0.pdf es_ES
dc.description.references Estado actual de la energía termosolar (CSP)—HELIONOTICIAShttp://helionoticias.es/estado-actual-de-la-energia-termosolar-csp/ es_ES
dc.description.references Gallo, A. B., Simões-Moreira, J. R., Costa, H. K. M., Santos, M. M., & Moutinho dos Santos, E. (2016). Energy storage in the energy transition context: A technology review. Renewable and Sustainable Energy Reviews, 65, 800-822. doi:10.1016/j.rser.2016.07.028 es_ES
dc.description.references Smallbone, A., Jülch, V., Wardle, R., & Roskilly, A. P. (2017). Levelised Cost of Storage for Pumped Heat Energy Storage in comparison with other energy storage technologies. Energy Conversion and Management, 152, 221-228. doi:10.1016/j.enconman.2017.09.047 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem