- -

Automatic diagnosis of electromechanical faults in induction motors based on the transient analysis of the stray flux via MUSIC methods

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Automatic diagnosis of electromechanical faults in induction motors based on the transient analysis of the stray flux via MUSIC methods

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Zamudio-Ramírez, Israel es_ES
dc.contributor.author Ramirez-Núñez, Juan Angel es_ES
dc.contributor.author Antonino Daviu, José Alfonso es_ES
dc.contributor.author Osornio-Rios, Roque A. es_ES
dc.contributor.author Quijano-Lopez, Alfredo es_ES
dc.contributor.author Razik, Hubert es_ES
dc.contributor.author Romero-Troncoso, Rene de Jesus es_ES
dc.date.accessioned 2021-07-06T03:31:06Z
dc.date.available 2021-07-06T03:31:06Z
dc.date.issued 2020-08 es_ES
dc.identifier.issn 0093-9994 es_ES
dc.identifier.uri http://hdl.handle.net/10251/168798
dc.description (c) 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. es_ES
dc.description.abstract [EN] In the induction motor predictive maintenance area, there is a continuous search for new techniques and methods that can provide additional information for a more reliable determination of the motor condition. In this context, the analysis of the stray flux has drawn the interest of many researchers. The simplicity, low cost and potential of this technique makes it attractive for complementing the diagnosis provided by other well-established methods. More specifically, the study of this quantity under the starting has been recently proposed as a valuable tool for the diagnosis of certain electromechanical faults. Despite this fact, the research in this approach is still incipient and the employed signal processing tools must be still optimized for a better visualization of the fault components. Moreover, the development of advanced algorithms that enable the automatic identification of the resulting transient patterns is another crucial target within this area. This article presents an advanced algorithm based on the combined application of MUSIC and neural networks that enables the automatic identification of the time-frequency patterns created by the stray flux fault components under starting as well as the subsequent determination of the fault severity level. Two faults are considered in the work: rotor problems and misalignments. Also, different positions of the external coil sensor are studied. The results prove the potential of the intelligent algorithm for the reliable diagnosis of electromechanical faults. es_ES
dc.description.sponsorship This work was supported in part by the Spanish "Ministerio de Ciencia Innovacion y Universidades" and in part by FEDER program in the "Proyectos de I+D de Generacion de Conocimiento del Programa Estatal de Generacion de Conocimiento y Fortalecimiento Cientifico y Tecnologico del Sistema de I+D+i, Subprograma Estatal de Generacion de Conocimiento" (PGC2018-095747-B-I00). es_ES
dc.language Inglés es_ES
dc.publisher Institute of Electrical and Electronics Engineers es_ES
dc.relation.ispartof IEEE Transactions on Industry Applications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Induction motors es_ES
dc.subject Rotors es_ES
dc.subject Multiple signal classification es_ES
dc.subject Transient analysis es_ES
dc.subject Reliability es_ES
dc.subject Time-frequency analysis es_ES
dc.subject Tools es_ES
dc.subject Fault diagnosis es_ES
dc.subject MUSIC es_ES
dc.subject Neural networks es_ES
dc.subject Predictive maintenance es_ES
dc.subject Rotor es_ES
dc.subject Stray flux es_ES
dc.subject.classification INGENIERIA ELECTRICA es_ES
dc.title Automatic diagnosis of electromechanical faults in induction motors based on the transient analysis of the stray flux via MUSIC methods es_ES
dc.type Artículo es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.1109/TIA.2020.2988002 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095747-B-I00/ES/TECNOLOGIAS AVANZADAS BASADAS EN EL ANALISIS DEL FLUJO DE DISPERSION EN REGIMEN TRANSITORIO PARA EL DIAGNOSTICO PRECOZ DE ANOMALIAS ELECTROMECANICAS EN MOTORES ELECTRICOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica es_ES
dc.description.bibliographicCitation Zamudio-Ramírez, I.; Ramirez-Núñez, JA.; Antonino Daviu, JA.; Osornio-Rios, RA.; Quijano-Lopez, A.; Razik, H.; Romero-Troncoso, RDJ. (2020). Automatic diagnosis of electromechanical faults in induction motors based on the transient analysis of the stray flux via MUSIC methods. IEEE Transactions on Industry Applications. 56(4):3604-3613. https://doi.org/10.1109/TIA.2020.2988002 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename 12th IEEE International Symposium on Diagnostics, Electric Machines, Power Electronics and Drives (SDEMPED 2019) es_ES
dc.relation.conferencedate Agosto 27-30,2019 es_ES
dc.relation.conferenceplace Toulouse, France es_ES
dc.relation.publisherversion https://doi.org/10.1109/TIA.2020.2988002 es_ES
dc.description.upvformatpinicio 3604 es_ES
dc.description.upvformatpfin 3613 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 56 es_ES
dc.description.issue 4 es_ES
dc.relation.pasarela S\407577 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem