Zamudio-Ramírez, I.; Ramirez-Núñez, JA.; Antonino Daviu, JA.; Osornio-Rios, RA.; Quijano-Lopez, A.; Razik, H.; Romero-Troncoso, RDJ. (2020). Automatic diagnosis of electromechanical faults in induction motors based on the transient analysis of the stray flux via MUSIC methods. IEEE Transactions on Industry Applications. 56(4):3604-3613. https://doi.org/10.1109/TIA.2020.2988002
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/168798
Título:
|
Automatic diagnosis of electromechanical faults in induction motors based on the transient analysis of the stray flux via MUSIC methods
|
Autor:
|
Zamudio-Ramírez, Israel
Ramirez-Núñez, Juan Angel
Antonino Daviu, José Alfonso
Osornio-Rios, Roque A.
Quijano-Lopez, Alfredo
Razik, Hubert
Romero-Troncoso, Rene de Jesus
|
Entidad UPV:
|
Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica
|
Fecha difusión:
|
|
Resumen:
|
[EN] In the induction motor predictive maintenance area, there is a continuous search for new techniques and methods that can provide additional information for a more reliable determination of the motor condition. In this ...[+]
[EN] In the induction motor predictive maintenance area, there is a continuous search for new techniques and methods that can provide additional information for a more reliable determination of the motor condition. In this context, the analysis of the stray flux has drawn the interest of many researchers. The simplicity, low cost and potential of this technique makes it attractive for complementing the diagnosis provided by other well-established methods. More specifically, the study of this quantity under the starting has been recently proposed as a valuable tool for the diagnosis of certain electromechanical faults. Despite this fact, the research in this approach is still incipient and the employed signal processing tools must be still optimized for a better visualization of the fault components. Moreover, the development of advanced algorithms that enable the automatic identification of the resulting transient patterns is another crucial target within this area. This article presents an advanced algorithm based on the combined application of MUSIC and neural networks that enables the automatic identification of the time-frequency patterns created by the stray flux fault components under starting as well as the subsequent determination of the fault severity level. Two faults are considered in the work: rotor problems and misalignments. Also, different positions of the external coil sensor are studied. The results prove the potential of the intelligent algorithm for the reliable diagnosis of electromechanical faults.
[-]
|
Palabras clave:
|
Induction motors
,
Rotors
,
Multiple signal classification
,
Transient analysis
,
Reliability
,
Time-frequency analysis
,
Tools
,
Fault diagnosis
,
MUSIC
,
Neural networks
,
Predictive maintenance
,
Rotor
,
Stray flux
|
Derechos de uso:
|
Reserva de todos los derechos
|
Fuente:
|
IEEE Transactions on Industry Applications. (issn:
0093-9994
)
|
DOI:
|
10.1109/TIA.2020.2988002
|
Editorial:
|
Institute of Electrical and Electronics Engineers
|
Versión del editor:
|
https://doi.org/10.1109/TIA.2020.2988002
|
Título del congreso:
|
12th IEEE International Symposium on Diagnostics, Electric Machines, Power Electronics and Drives (SDEMPED 2019)
|
Lugar del congreso:
|
Toulouse, France
|
Fecha congreso:
|
Agosto 27-30,2019
|
Código del Proyecto:
|
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095747-B-I00/ES/TECNOLOGIAS AVANZADAS BASADAS EN EL ANALISIS DEL FLUJO DE DISPERSION EN REGIMEN TRANSITORIO PARA EL DIAGNOSTICO PRECOZ DE ANOMALIAS ELECTROMECANICAS EN MOTORES ELECTRICOS/
|
Descripción:
|
(c) 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
|
Agradecimientos:
|
This work was supported in part by the Spanish "Ministerio de Ciencia Innovacion y Universidades" and in part by FEDER program in the "Proyectos de I+D de Generacion de Conocimiento del Programa Estatal de Generacion de ...[+]
This work was supported in part by the Spanish "Ministerio de Ciencia Innovacion y Universidades" and in part by FEDER program in the "Proyectos de I+D de Generacion de Conocimiento del Programa Estatal de Generacion de Conocimiento y Fortalecimiento Cientifico y Tecnologico del Sistema de I+D+i, Subprograma Estatal de Generacion de Conocimiento" (PGC2018-095747-B-I00).
[-]
|
Tipo:
|
Artículo
Comunicación en congreso
|