Wu, Z.-S., Yang, S., Sun, Y., Parvez, K., Feng, X., & Müllen, K. (2012). 3D Nitrogen-Doped Graphene Aerogel-Supported Fe3O4 Nanoparticles as Efficient Electrocatalysts for the Oxygen Reduction Reaction. Journal of the American Chemical Society, 134(22), 9082-9085. doi:10.1021/ja3030565
Cao, X., Shi, Y., Shi, W., Lu, G., Huang, X., Yan, Q., … Zhang, H. (2011). Preparation of Novel 3D Graphene Networks for Supercapacitor Applications. Small, 7(22), 3163-3168. doi:10.1002/smll.201100990
Choi, B. G., Yang, M., Hong, W. H., Choi, J. W., & Huh, Y. S. (2012). 3D Macroporous Graphene Frameworks for Supercapacitors with High Energy and Power Densities. ACS Nano, 6(5), 4020-4028. doi:10.1021/nn3003345
[+]
Wu, Z.-S., Yang, S., Sun, Y., Parvez, K., Feng, X., & Müllen, K. (2012). 3D Nitrogen-Doped Graphene Aerogel-Supported Fe3O4 Nanoparticles as Efficient Electrocatalysts for the Oxygen Reduction Reaction. Journal of the American Chemical Society, 134(22), 9082-9085. doi:10.1021/ja3030565
Cao, X., Shi, Y., Shi, W., Lu, G., Huang, X., Yan, Q., … Zhang, H. (2011). Preparation of Novel 3D Graphene Networks for Supercapacitor Applications. Small, 7(22), 3163-3168. doi:10.1002/smll.201100990
Choi, B. G., Yang, M., Hong, W. H., Choi, J. W., & Huh, Y. S. (2012). 3D Macroporous Graphene Frameworks for Supercapacitors with High Energy and Power Densities. ACS Nano, 6(5), 4020-4028. doi:10.1021/nn3003345
Eftekhari, A. (2018). On the mechanism of microporous carbon supercapacitors. Materials Today Chemistry, 7, 1-4. doi:10.1016/j.mtchem.2017.11.004
Ke, Q., & Wang, J. (2016). Graphene-based materials for supercapacitor electrodes – A review. Journal of Materiomics, 2(1), 37-54. doi:10.1016/j.jmat.2016.01.001
Wu, Z.-S., Sun, Y., Tan, Y.-Z., Yang, S., Feng, X., & Müllen, K. (2012). Three-Dimensional Graphene-Based Macro- and Mesoporous Frameworks for High-Performance Electrochemical Capacitive Energy Storage. Journal of the American Chemical Society, 134(48), 19532-19535. doi:10.1021/ja308676h
Mao, S., Lu, G., & Chen, J. (2015). Three-dimensional graphene-based composites for energy applications. Nanoscale, 7(16), 6924-6943. doi:10.1039/c4nr06609j
Ito, Y., Tanabe, Y., Sugawara, K., Koshino, M., Takahashi, T., Tanigaki, K., … Chen, M. (2018). Three-dimensional porous graphene networks expand graphene-based electronic device applications. Physical Chemistry Chemical Physics, 20(9), 6024-6033. doi:10.1039/c7cp07667c
Niu, J., Domenech-Carbó, A., Primo, A., & Garcia, H. (2019). Uniform nanoporous graphene sponge from natural polysaccharides as a metal-free electrocatalyst for hydrogen generation. RSC Advances, 9(1), 99-106. doi:10.1039/c8ra08745h
Rendón-Patiño, A., Niu, J., Doménech-Carbó, A., García, H., & Primo, A. (2019). Polystyrene as Graphene Film and 3D Graphene Sponge Precursor. Nanomaterials, 9(1), 101. doi:10.3390/nano9010101
Liu, J., Yang, T., Wang, D.-W., Lu, G. Q., Zhao, D., & Qiao, S. Z. (2013). A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres. Nature Communications, 4(1). doi:10.1038/ncomms3798
Pileni, M.-P. (2003). The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nature Materials, 2(3), 145-150. doi:10.1038/nmat817
Wang, Y., Wang, X., Antonietti, M., & Zhang, Y. (2010). Facile One-Pot Synthesis of Nanoporous Carbon Nitride Solids by Using Soft Templates. ChemSusChem, 3(4), 435-439. doi:10.1002/cssc.200900284
Lewis, D. W., Willock, D. J., Catlow, C. R. A., Thomas, J. M., & Hutchings, G. J. (1996). De novo design of structure-directing agents for the synthesis of microporous solids. Nature, 382(6592), 604-606. doi:10.1038/382604a0
Davis, M. E., & Lobo, R. F. (1992). Zeolite and molecular sieve synthesis. Chemistry of Materials, 4(4), 756-768. doi:10.1021/cm00022a005
Cundy, C. S., & Cox, P. A. (2003). The Hydrothermal Synthesis of Zeolites: History and Development from the Earliest Days to the Present Time. Chemical Reviews, 103(3), 663-702. doi:10.1021/cr020060i
Kleitz, F., Hei Choi, S., & Ryoo, R. (2003). Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubesElectronic supplementary information (ESI) available: TEM images of mesoporous cubic silica and Pt networks, XRD patterns during formation of the cubic phase. See http://www.rsc.org/suppdata/cc/b3/b306504a/. Chemical Communications, (17), 2136. doi:10.1039/b306504a
Sakamoto, Y., Kim, T.-W., Ryoo, R., & Terasaki, O. (2004). Three-Dimensional Structure of Large-Pore Mesoporous CubicIad Silica with Complementary Pores and Its Carbon Replica by Electron Crystallography. Angewandte Chemie International Edition, 43(39), 5231-5234. doi:10.1002/anie.200460449
R. Muzzarelli , S.Aiba , Y.Fujiwara , T.Hideshima , C.Hwang , M.Kakizaki , M.Izume , N.Minoura , C.Rha and T.Shouij , in Chitin in Nature and Technology , Springer , 1986 , pp. 389–402
Primo, A., Atienzar, P., Sanchez, E., Delgado, J. M., & García, H. (2012). From biomass wastes to large-area, high-quality, N-doped graphene: catalyst-free carbonization of chitosan coatings on arbitrary substrates. Chemical Communications, 48(74), 9254. doi:10.1039/c2cc34978g
Latorre-Sánchez, M., Primo, A., Atienzar, P., Forneli, A., & García, H. (2014). p-n Heterojunction of Doped Graphene Films Obtained by Pyrolysis of Biomass Precursors. Small, 11(8), 970-975. doi:10.1002/smll.201402278
Trandafir, M.-M., Florea, M., Neaţu, F., Primo, A., Parvulescu, V. I., & García, H. (2016). Graphene from Alginate Pyrolysis as a Metal-Free Catalyst for Hydrogenation of Nitro Compounds. ChemSusChem, 9(13), 1565-1569. doi:10.1002/cssc.201600197
Dhakshinamoorthy, A., Primo, A., Concepcion, P., Alvaro, M., & Garcia, H. (2013). Doped Graphene as a Metal-Free Carbocatalyst for the Selective Aerobic Oxidation of Benzylic Hydrocarbons, Cyclooctane and Styrene. Chemistry - A European Journal, 19(23), 7547-7554. doi:10.1002/chem.201300653
Latorre-Sánchez, M., Primo, A., & García, H. (2013). P-Doped Graphene Obtained by Pyrolysis of Modified Alginate as a Photocatalyst for Hydrogen Generation from Water-Methanol Mixtures. Angewandte Chemie International Edition, 52(45), 11813-11816. doi:10.1002/anie.201304505
Primo, A., Forneli, A., Corma, A., & García, H. (2012). From Biomass Wastes to Highly Efficient CO2Adsorbents: Graphitisation of Chitosan and Alginate Biopolymers. ChemSusChem, 5(11), 2207-2214. doi:10.1002/cssc.201200366
Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., & Ruoff, R. S. (2010). Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Advanced Materials, 22(35), 3906-3924. doi:10.1002/adma.201001068
Jagiello, J., & Thommes, M. (2004). Comparison of DFT characterization methods based on N2, Ar, CO2, and H2 adsorption applied to carbons with various pore size distributions. Carbon, 42(7), 1227-1232. doi:10.1016/j.carbon.2004.01.022
Lozano-Castelló, D., Cazorla-Amorós, D., & Linares-Solano, A. (2004). Usefulness of CO2 adsorption at 273 K for the characterization of porous carbons. Carbon, 42(7), 1233-1242. doi:10.1016/j.carbon.2004.01.037
Cinke, M., Li, J., Bauschlicher, C. W., Ricca, A., & Meyyappan, M. (2003). CO2 adsorption in single-walled carbon nanotubes. Chemical Physics Letters, 376(5-6), 761-766. doi:10.1016/s0009-2614(03)01124-2
He, J., Anouar, A., Primo, A., & García, H. (2019). Quality Improvement of Few-Layers Defective Graphene from Biomass and Application for H2 Generation. Nanomaterials, 9(6), 895. doi:10.3390/nano9060895
Chen, C.-Y., Burkett, S. L., Li, H.-X., & Davis, M. E. (1993). Studies on mesoporous materials II. Synthesis mechanism of MCM-41. Microporous Materials, 2(1), 27-34. doi:10.1016/0927-6513(93)80059-4
Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359(6397), 710-712. doi:10.1038/359710a0
Chen, C.-Y., Li, H.-X., & Davis, M. E. (1993). Studies on mesoporous materials. Microporous Materials, 2(1), 17-26. doi:10.1016/0927-6513(93)80058-3
Balducci, A., Dugas, R., Taberna, P. L., Simon, P., Plée, D., Mastragostino, M., & Passerini, S. (2007). High temperature carbon–carbon supercapacitor using ionic liquid as electrolyte. Journal of Power Sources, 165(2), 922-927. doi:10.1016/j.jpowsour.2006.12.048
Osmieri, L., Monteverde Videla, A. H. A., & Specchia, S. (2016). The use of different types of reduced graphene oxide in the preparation of Fe-N-C electrocatalysts: capacitive behavior and oxygen reduction reaction activity in alkaline medium. Journal of Solid State Electrochemistry, 20(12), 3507-3523. doi:10.1007/s10008-016-3332-2
Ballesteros-Garrido, R., de Miguel, M., Doménech-Carbó, A., Alvaro, M., & Garcia, H. (2013). Tunability by alkali metal cations of photoinduced charge separation in azacrown functionalized graphene. Chemical Communications, 49(31), 3236. doi:10.1039/c3cc39145k
[-]