Mostrar el registro sencillo del ítem
dc.contributor.author | Peng, Lu | es_ES |
dc.contributor.author | Domenech-Carbo, Antonio | es_ES |
dc.contributor.author | Primo Arnau, Ana Maria | es_ES |
dc.contributor.author | García Gómez, Hermenegildo | es_ES |
dc.date.accessioned | 2021-07-07T03:30:57Z | |
dc.date.available | 2021-07-07T03:30:57Z | |
dc.date.issued | 2019-12-01 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/168874 | |
dc.description.abstract | [EN] By applying the well-known templating mechanism employed for the synthesis of mesoporous silicas to the structuration of sodium alginate, a novel defective 3D tubular graphene material (graphenolite) with hierarchical macro/meso/micro-porous structure, very high powder specific surface area (1820 m2 g¿1) and regular micropore size (0.6 nm) has been obtained. The key feature of the process is the filmogenic property of alginate that is able to replicate the liquid crystal rods formed by the CTAC template in the aqueous phase. The 3D graphene exhibits 2.5 times higher capacitance using Li+ electrolyte compared to K+, indicating that Li+ can ingress to the ultramicropores which, in contrast, are not accessible to K+. Electrochemical impedance measurements also indicate much lower resistance for Li+ in comparison to K+ electrolyte, confirming the benefits of controlled microporosity of 3D graphene granting selective access to Li+, but not to K+. The present report opens the door for the synthesis of a wide range of 3D graphene materials that could be prepared following similar strategies to those employed for the preparation of zeolites and periodic mesoporous aluminosilicates | es_ES |
dc.description.sponsorship | Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa and RTI2018-98237-CO2-R1) and Generalitat Valenciana (Prometeo 2017-083) is gratefully acknowledged. A.P. thanks the Spanish Ministry of Science and Education for a Ramon y Cajal research associate contract. We are indebted to Dr Miguel Palomino for CO<INF>2</INF> adsorption measurements and Dr Pedro Atienzar for measurement of the electrical conductivity. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Royal Society of Chemistry | es_ES |
dc.relation | MINECO/RTI2018-98237-CO2-R1 | es_ES |
dc.relation.ispartof | Nanoscale Advances | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | 3D defective graphenes with subnanometric porosity obtained by soft-templating following zeolite procedures | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/C9NA00554D | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F083/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Peng, L.; Domenech-Carbo, A.; Primo Arnau, AM.; García Gómez, H. (2019). 3D defective graphenes with subnanometric porosity obtained by soft-templating following zeolite procedures. Nanoscale Advances. 1(12):4827-4833. https://doi.org/10.1039/C9NA00554D | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1039/C9NA00554D | es_ES |
dc.description.upvformatpinicio | 4827 | es_ES |
dc.description.upvformatpfin | 4833 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 1 | es_ES |
dc.description.issue | 12 | es_ES |
dc.identifier.eissn | 2516-0230 | es_ES |
dc.relation.pasarela | S\437166 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Wu, Z.-S., Yang, S., Sun, Y., Parvez, K., Feng, X., & Müllen, K. (2012). 3D Nitrogen-Doped Graphene Aerogel-Supported Fe3O4 Nanoparticles as Efficient Electrocatalysts for the Oxygen Reduction Reaction. Journal of the American Chemical Society, 134(22), 9082-9085. doi:10.1021/ja3030565 | es_ES |
dc.description.references | Cao, X., Shi, Y., Shi, W., Lu, G., Huang, X., Yan, Q., … Zhang, H. (2011). Preparation of Novel 3D Graphene Networks for Supercapacitor Applications. Small, 7(22), 3163-3168. doi:10.1002/smll.201100990 | es_ES |
dc.description.references | Choi, B. G., Yang, M., Hong, W. H., Choi, J. W., & Huh, Y. S. (2012). 3D Macroporous Graphene Frameworks for Supercapacitors with High Energy and Power Densities. ACS Nano, 6(5), 4020-4028. doi:10.1021/nn3003345 | es_ES |
dc.description.references | Eftekhari, A. (2018). On the mechanism of microporous carbon supercapacitors. Materials Today Chemistry, 7, 1-4. doi:10.1016/j.mtchem.2017.11.004 | es_ES |
dc.description.references | Ke, Q., & Wang, J. (2016). Graphene-based materials for supercapacitor electrodes – A review. Journal of Materiomics, 2(1), 37-54. doi:10.1016/j.jmat.2016.01.001 | es_ES |
dc.description.references | Wu, Z.-S., Sun, Y., Tan, Y.-Z., Yang, S., Feng, X., & Müllen, K. (2012). Three-Dimensional Graphene-Based Macro- and Mesoporous Frameworks for High-Performance Electrochemical Capacitive Energy Storage. Journal of the American Chemical Society, 134(48), 19532-19535. doi:10.1021/ja308676h | es_ES |
dc.description.references | Mao, S., Lu, G., & Chen, J. (2015). Three-dimensional graphene-based composites for energy applications. Nanoscale, 7(16), 6924-6943. doi:10.1039/c4nr06609j | es_ES |
dc.description.references | Ito, Y., Tanabe, Y., Sugawara, K., Koshino, M., Takahashi, T., Tanigaki, K., … Chen, M. (2018). Three-dimensional porous graphene networks expand graphene-based electronic device applications. Physical Chemistry Chemical Physics, 20(9), 6024-6033. doi:10.1039/c7cp07667c | es_ES |
dc.description.references | Niu, J., Domenech-Carbó, A., Primo, A., & Garcia, H. (2019). Uniform nanoporous graphene sponge from natural polysaccharides as a metal-free electrocatalyst for hydrogen generation. RSC Advances, 9(1), 99-106. doi:10.1039/c8ra08745h | es_ES |
dc.description.references | Rendón-Patiño, A., Niu, J., Doménech-Carbó, A., García, H., & Primo, A. (2019). Polystyrene as Graphene Film and 3D Graphene Sponge Precursor. Nanomaterials, 9(1), 101. doi:10.3390/nano9010101 | es_ES |
dc.description.references | Liu, J., Yang, T., Wang, D.-W., Lu, G. Q., Zhao, D., & Qiao, S. Z. (2013). A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres. Nature Communications, 4(1). doi:10.1038/ncomms3798 | es_ES |
dc.description.references | Pileni, M.-P. (2003). The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nature Materials, 2(3), 145-150. doi:10.1038/nmat817 | es_ES |
dc.description.references | Wang, Y., Wang, X., Antonietti, M., & Zhang, Y. (2010). Facile One-Pot Synthesis of Nanoporous Carbon Nitride Solids by Using Soft Templates. ChemSusChem, 3(4), 435-439. doi:10.1002/cssc.200900284 | es_ES |
dc.description.references | Lewis, D. W., Willock, D. J., Catlow, C. R. A., Thomas, J. M., & Hutchings, G. J. (1996). De novo design of structure-directing agents for the synthesis of microporous solids. Nature, 382(6592), 604-606. doi:10.1038/382604a0 | es_ES |
dc.description.references | Davis, M. E., & Lobo, R. F. (1992). Zeolite and molecular sieve synthesis. Chemistry of Materials, 4(4), 756-768. doi:10.1021/cm00022a005 | es_ES |
dc.description.references | Cundy, C. S., & Cox, P. A. (2003). The Hydrothermal Synthesis of Zeolites: History and Development from the Earliest Days to the Present Time. Chemical Reviews, 103(3), 663-702. doi:10.1021/cr020060i | es_ES |
dc.description.references | Kleitz, F., Hei Choi, S., & Ryoo, R. (2003). Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubesElectronic supplementary information (ESI) available: TEM images of mesoporous cubic silica and Pt networks, XRD patterns during formation of the cubic phase. See http://www.rsc.org/suppdata/cc/b3/b306504a/. Chemical Communications, (17), 2136. doi:10.1039/b306504a | es_ES |
dc.description.references | Sakamoto, Y., Kim, T.-W., Ryoo, R., & Terasaki, O. (2004). Three-Dimensional Structure of Large-Pore Mesoporous CubicIad Silica with Complementary Pores and Its Carbon Replica by Electron Crystallography. Angewandte Chemie International Edition, 43(39), 5231-5234. doi:10.1002/anie.200460449 | es_ES |
dc.description.references | R. Muzzarelli , S.Aiba , Y.Fujiwara , T.Hideshima , C.Hwang , M.Kakizaki , M.Izume , N.Minoura , C.Rha and T.Shouij , in Chitin in Nature and Technology , Springer , 1986 , pp. 389–402 | es_ES |
dc.description.references | Primo, A., Atienzar, P., Sanchez, E., Delgado, J. M., & García, H. (2012). From biomass wastes to large-area, high-quality, N-doped graphene: catalyst-free carbonization of chitosan coatings on arbitrary substrates. Chemical Communications, 48(74), 9254. doi:10.1039/c2cc34978g | es_ES |
dc.description.references | Latorre-Sánchez, M., Primo, A., Atienzar, P., Forneli, A., & García, H. (2014). p-n Heterojunction of Doped Graphene Films Obtained by Pyrolysis of Biomass Precursors. Small, 11(8), 970-975. doi:10.1002/smll.201402278 | es_ES |
dc.description.references | Trandafir, M.-M., Florea, M., Neaţu, F., Primo, A., Parvulescu, V. I., & García, H. (2016). Graphene from Alginate Pyrolysis as a Metal-Free Catalyst for Hydrogenation of Nitro Compounds. ChemSusChem, 9(13), 1565-1569. doi:10.1002/cssc.201600197 | es_ES |
dc.description.references | Dhakshinamoorthy, A., Primo, A., Concepcion, P., Alvaro, M., & Garcia, H. (2013). Doped Graphene as a Metal-Free Carbocatalyst for the Selective Aerobic Oxidation of Benzylic Hydrocarbons, Cyclooctane and Styrene. Chemistry - A European Journal, 19(23), 7547-7554. doi:10.1002/chem.201300653 | es_ES |
dc.description.references | Latorre-Sánchez, M., Primo, A., & García, H. (2013). P-Doped Graphene Obtained by Pyrolysis of Modified Alginate as a Photocatalyst for Hydrogen Generation from Water-Methanol Mixtures. Angewandte Chemie International Edition, 52(45), 11813-11816. doi:10.1002/anie.201304505 | es_ES |
dc.description.references | Primo, A., Forneli, A., Corma, A., & García, H. (2012). From Biomass Wastes to Highly Efficient CO2Adsorbents: Graphitisation of Chitosan and Alginate Biopolymers. ChemSusChem, 5(11), 2207-2214. doi:10.1002/cssc.201200366 | es_ES |
dc.description.references | Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., & Ruoff, R. S. (2010). Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Advanced Materials, 22(35), 3906-3924. doi:10.1002/adma.201001068 | es_ES |
dc.description.references | Jagiello, J., & Thommes, M. (2004). Comparison of DFT characterization methods based on N2, Ar, CO2, and H2 adsorption applied to carbons with various pore size distributions. Carbon, 42(7), 1227-1232. doi:10.1016/j.carbon.2004.01.022 | es_ES |
dc.description.references | Lozano-Castelló, D., Cazorla-Amorós, D., & Linares-Solano, A. (2004). Usefulness of CO2 adsorption at 273 K for the characterization of porous carbons. Carbon, 42(7), 1233-1242. doi:10.1016/j.carbon.2004.01.037 | es_ES |
dc.description.references | Cinke, M., Li, J., Bauschlicher, C. W., Ricca, A., & Meyyappan, M. (2003). CO2 adsorption in single-walled carbon nanotubes. Chemical Physics Letters, 376(5-6), 761-766. doi:10.1016/s0009-2614(03)01124-2 | es_ES |
dc.description.references | He, J., Anouar, A., Primo, A., & García, H. (2019). Quality Improvement of Few-Layers Defective Graphene from Biomass and Application for H2 Generation. Nanomaterials, 9(6), 895. doi:10.3390/nano9060895 | es_ES |
dc.description.references | Chen, C.-Y., Burkett, S. L., Li, H.-X., & Davis, M. E. (1993). Studies on mesoporous materials II. Synthesis mechanism of MCM-41. Microporous Materials, 2(1), 27-34. doi:10.1016/0927-6513(93)80059-4 | es_ES |
dc.description.references | Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359(6397), 710-712. doi:10.1038/359710a0 | es_ES |
dc.description.references | Chen, C.-Y., Li, H.-X., & Davis, M. E. (1993). Studies on mesoporous materials. Microporous Materials, 2(1), 17-26. doi:10.1016/0927-6513(93)80058-3 | es_ES |
dc.description.references | Balducci, A., Dugas, R., Taberna, P. L., Simon, P., Plée, D., Mastragostino, M., & Passerini, S. (2007). High temperature carbon–carbon supercapacitor using ionic liquid as electrolyte. Journal of Power Sources, 165(2), 922-927. doi:10.1016/j.jpowsour.2006.12.048 | es_ES |
dc.description.references | Osmieri, L., Monteverde Videla, A. H. A., & Specchia, S. (2016). The use of different types of reduced graphene oxide in the preparation of Fe-N-C electrocatalysts: capacitive behavior and oxygen reduction reaction activity in alkaline medium. Journal of Solid State Electrochemistry, 20(12), 3507-3523. doi:10.1007/s10008-016-3332-2 | es_ES |
dc.description.references | Ballesteros-Garrido, R., de Miguel, M., Doménech-Carbó, A., Alvaro, M., & Garcia, H. (2013). Tunability by alkali metal cations of photoinduced charge separation in azacrown functionalized graphene. Chemical Communications, 49(31), 3236. doi:10.1039/c3cc39145k | es_ES |