- -

3D defective graphenes with subnanometric porosity obtained by soft-templating following zeolite procedures

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

3D defective graphenes with subnanometric porosity obtained by soft-templating following zeolite procedures

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Peng, Lu es_ES
dc.contributor.author Domenech-Carbo, Antonio es_ES
dc.contributor.author Primo Arnau, Ana Maria es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.date.accessioned 2021-07-07T03:30:57Z
dc.date.available 2021-07-07T03:30:57Z
dc.date.issued 2019-12-01 es_ES
dc.identifier.uri http://hdl.handle.net/10251/168874
dc.description.abstract [EN] By applying the well-known templating mechanism employed for the synthesis of mesoporous silicas to the structuration of sodium alginate, a novel defective 3D tubular graphene material (graphenolite) with hierarchical macro/meso/micro-porous structure, very high powder specific surface area (1820 m2 g¿1) and regular micropore size (0.6 nm) has been obtained. The key feature of the process is the filmogenic property of alginate that is able to replicate the liquid crystal rods formed by the CTAC template in the aqueous phase. The 3D graphene exhibits 2.5 times higher capacitance using Li+ electrolyte compared to K+, indicating that Li+ can ingress to the ultramicropores which, in contrast, are not accessible to K+. Electrochemical impedance measurements also indicate much lower resistance for Li+ in comparison to K+ electrolyte, confirming the benefits of controlled microporosity of 3D graphene granting selective access to Li+, but not to K+. The present report opens the door for the synthesis of a wide range of 3D graphene materials that could be prepared following similar strategies to those employed for the preparation of zeolites and periodic mesoporous aluminosilicates es_ES
dc.description.sponsorship Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa and RTI2018-98237-CO2-R1) and Generalitat Valenciana (Prometeo 2017-083) is gratefully acknowledged. A.P. thanks the Spanish Ministry of Science and Education for a Ramon y Cajal research associate contract. We are indebted to Dr Miguel Palomino for CO<INF>2</INF> adsorption measurements and Dr Pedro Atienzar for measurement of the electrical conductivity. es_ES
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation MINECO/RTI2018-98237-CO2-R1 es_ES
dc.relation.ispartof Nanoscale Advances es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title 3D defective graphenes with subnanometric porosity obtained by soft-templating following zeolite procedures es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/C9NA00554D es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F083/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Peng, L.; Domenech-Carbo, A.; Primo Arnau, AM.; García Gómez, H. (2019). 3D defective graphenes with subnanometric porosity obtained by soft-templating following zeolite procedures. Nanoscale Advances. 1(12):4827-4833. https://doi.org/10.1039/C9NA00554D es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/C9NA00554D es_ES
dc.description.upvformatpinicio 4827 es_ES
dc.description.upvformatpfin 4833 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 1 es_ES
dc.description.issue 12 es_ES
dc.identifier.eissn 2516-0230 es_ES
dc.relation.pasarela S\437166 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Wu, Z.-S., Yang, S., Sun, Y., Parvez, K., Feng, X., & Müllen, K. (2012). 3D Nitrogen-Doped Graphene Aerogel-Supported Fe3O4 Nanoparticles as Efficient Electrocatalysts for the Oxygen Reduction Reaction. Journal of the American Chemical Society, 134(22), 9082-9085. doi:10.1021/ja3030565 es_ES
dc.description.references Cao, X., Shi, Y., Shi, W., Lu, G., Huang, X., Yan, Q., … Zhang, H. (2011). Preparation of Novel 3D Graphene Networks for Supercapacitor Applications. Small, 7(22), 3163-3168. doi:10.1002/smll.201100990 es_ES
dc.description.references Choi, B. G., Yang, M., Hong, W. H., Choi, J. W., & Huh, Y. S. (2012). 3D Macroporous Graphene Frameworks for Supercapacitors with High Energy and Power Densities. ACS Nano, 6(5), 4020-4028. doi:10.1021/nn3003345 es_ES
dc.description.references Eftekhari, A. (2018). On the mechanism of microporous carbon supercapacitors. Materials Today Chemistry, 7, 1-4. doi:10.1016/j.mtchem.2017.11.004 es_ES
dc.description.references Ke, Q., & Wang, J. (2016). Graphene-based materials for supercapacitor electrodes – A review. Journal of Materiomics, 2(1), 37-54. doi:10.1016/j.jmat.2016.01.001 es_ES
dc.description.references Wu, Z.-S., Sun, Y., Tan, Y.-Z., Yang, S., Feng, X., & Müllen, K. (2012). Three-Dimensional Graphene-Based Macro- and Mesoporous Frameworks for High-Performance Electrochemical Capacitive Energy Storage. Journal of the American Chemical Society, 134(48), 19532-19535. doi:10.1021/ja308676h es_ES
dc.description.references Mao, S., Lu, G., & Chen, J. (2015). Three-dimensional graphene-based composites for energy applications. Nanoscale, 7(16), 6924-6943. doi:10.1039/c4nr06609j es_ES
dc.description.references Ito, Y., Tanabe, Y., Sugawara, K., Koshino, M., Takahashi, T., Tanigaki, K., … Chen, M. (2018). Three-dimensional porous graphene networks expand graphene-based electronic device applications. Physical Chemistry Chemical Physics, 20(9), 6024-6033. doi:10.1039/c7cp07667c es_ES
dc.description.references Niu, J., Domenech-Carbó, A., Primo, A., & Garcia, H. (2019). Uniform nanoporous graphene sponge from natural polysaccharides as a metal-free electrocatalyst for hydrogen generation. RSC Advances, 9(1), 99-106. doi:10.1039/c8ra08745h es_ES
dc.description.references Rendón-Patiño, A., Niu, J., Doménech-Carbó, A., García, H., & Primo, A. (2019). Polystyrene as Graphene Film and 3D Graphene Sponge Precursor. Nanomaterials, 9(1), 101. doi:10.3390/nano9010101 es_ES
dc.description.references Liu, J., Yang, T., Wang, D.-W., Lu, G. Q., Zhao, D., & Qiao, S. Z. (2013). A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres. Nature Communications, 4(1). doi:10.1038/ncomms3798 es_ES
dc.description.references Pileni, M.-P. (2003). The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nature Materials, 2(3), 145-150. doi:10.1038/nmat817 es_ES
dc.description.references Wang, Y., Wang, X., Antonietti, M., & Zhang, Y. (2010). Facile One-Pot Synthesis of Nanoporous Carbon Nitride Solids by Using Soft Templates. ChemSusChem, 3(4), 435-439. doi:10.1002/cssc.200900284 es_ES
dc.description.references Lewis, D. W., Willock, D. J., Catlow, C. R. A., Thomas, J. M., & Hutchings, G. J. (1996). De novo design of structure-directing agents for the synthesis of microporous solids. Nature, 382(6592), 604-606. doi:10.1038/382604a0 es_ES
dc.description.references Davis, M. E., & Lobo, R. F. (1992). Zeolite and molecular sieve synthesis. Chemistry of Materials, 4(4), 756-768. doi:10.1021/cm00022a005 es_ES
dc.description.references Cundy, C. S., & Cox, P. A. (2003). The Hydrothermal Synthesis of Zeolites:  History and Development from the Earliest Days to the Present Time. Chemical Reviews, 103(3), 663-702. doi:10.1021/cr020060i es_ES
dc.description.references Kleitz, F., Hei Choi, S., & Ryoo, R. (2003). Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubesElectronic supplementary information (ESI) available: TEM images of mesoporous cubic silica and Pt networks, XRD patterns during formation of the cubic phase. See http://www.rsc.org/suppdata/cc/b3/b306504a/. Chemical Communications, (17), 2136. doi:10.1039/b306504a es_ES
dc.description.references Sakamoto, Y., Kim, T.-W., Ryoo, R., & Terasaki, O. (2004). Three-Dimensional Structure of Large-Pore Mesoporous CubicIad Silica with Complementary Pores and Its Carbon Replica by Electron Crystallography. Angewandte Chemie International Edition, 43(39), 5231-5234. doi:10.1002/anie.200460449 es_ES
dc.description.references R. Muzzarelli , S.Aiba , Y.Fujiwara , T.Hideshima , C.Hwang , M.Kakizaki , M.Izume , N.Minoura , C.Rha and T.Shouij , in Chitin in Nature and Technology , Springer , 1986 , pp. 389–402 es_ES
dc.description.references Primo, A., Atienzar, P., Sanchez, E., Delgado, J. M., & García, H. (2012). From biomass wastes to large-area, high-quality, N-doped graphene: catalyst-free carbonization of chitosan coatings on arbitrary substrates. Chemical Communications, 48(74), 9254. doi:10.1039/c2cc34978g es_ES
dc.description.references Latorre-Sánchez, M., Primo, A., Atienzar, P., Forneli, A., & García, H. (2014). p-n Heterojunction of Doped Graphene Films Obtained by Pyrolysis of Biomass Precursors. Small, 11(8), 970-975. doi:10.1002/smll.201402278 es_ES
dc.description.references Trandafir, M.-M., Florea, M., Neaţu, F., Primo, A., Parvulescu, V. I., & García, H. (2016). Graphene from Alginate Pyrolysis as a Metal-Free Catalyst for Hydrogenation of Nitro Compounds. ChemSusChem, 9(13), 1565-1569. doi:10.1002/cssc.201600197 es_ES
dc.description.references Dhakshinamoorthy, A., Primo, A., Concepcion, P., Alvaro, M., & Garcia, H. (2013). Doped Graphene as a Metal-Free Carbocatalyst for the Selective Aerobic Oxidation of Benzylic Hydrocarbons, Cyclooctane and Styrene. Chemistry - A European Journal, 19(23), 7547-7554. doi:10.1002/chem.201300653 es_ES
dc.description.references Latorre-Sánchez, M., Primo, A., & García, H. (2013). P-Doped Graphene Obtained by Pyrolysis of Modified Alginate as a Photocatalyst for Hydrogen Generation from Water-Methanol Mixtures. Angewandte Chemie International Edition, 52(45), 11813-11816. doi:10.1002/anie.201304505 es_ES
dc.description.references Primo, A., Forneli, A., Corma, A., & García, H. (2012). From Biomass Wastes to Highly Efficient CO2Adsorbents: Graphitisation of Chitosan and Alginate Biopolymers. ChemSusChem, 5(11), 2207-2214. doi:10.1002/cssc.201200366 es_ES
dc.description.references Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., & Ruoff, R. S. (2010). Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Advanced Materials, 22(35), 3906-3924. doi:10.1002/adma.201001068 es_ES
dc.description.references Jagiello, J., & Thommes, M. (2004). Comparison of DFT characterization methods based on N2, Ar, CO2, and H2 adsorption applied to carbons with various pore size distributions. Carbon, 42(7), 1227-1232. doi:10.1016/j.carbon.2004.01.022 es_ES
dc.description.references Lozano-Castelló, D., Cazorla-Amorós, D., & Linares-Solano, A. (2004). Usefulness of CO2 adsorption at 273 K for the characterization of porous carbons. Carbon, 42(7), 1233-1242. doi:10.1016/j.carbon.2004.01.037 es_ES
dc.description.references Cinke, M., Li, J., Bauschlicher, C. W., Ricca, A., & Meyyappan, M. (2003). CO2 adsorption in single-walled carbon nanotubes. Chemical Physics Letters, 376(5-6), 761-766. doi:10.1016/s0009-2614(03)01124-2 es_ES
dc.description.references He, J., Anouar, A., Primo, A., & García, H. (2019). Quality Improvement of Few-Layers Defective Graphene from Biomass and Application for H2 Generation. Nanomaterials, 9(6), 895. doi:10.3390/nano9060895 es_ES
dc.description.references Chen, C.-Y., Burkett, S. L., Li, H.-X., & Davis, M. E. (1993). Studies on mesoporous materials II. Synthesis mechanism of MCM-41. Microporous Materials, 2(1), 27-34. doi:10.1016/0927-6513(93)80059-4 es_ES
dc.description.references Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359(6397), 710-712. doi:10.1038/359710a0 es_ES
dc.description.references Chen, C.-Y., Li, H.-X., & Davis, M. E. (1993). Studies on mesoporous materials. Microporous Materials, 2(1), 17-26. doi:10.1016/0927-6513(93)80058-3 es_ES
dc.description.references Balducci, A., Dugas, R., Taberna, P. L., Simon, P., Plée, D., Mastragostino, M., & Passerini, S. (2007). High temperature carbon–carbon supercapacitor using ionic liquid as electrolyte. Journal of Power Sources, 165(2), 922-927. doi:10.1016/j.jpowsour.2006.12.048 es_ES
dc.description.references Osmieri, L., Monteverde Videla, A. H. A., & Specchia, S. (2016). The use of different types of reduced graphene oxide in the preparation of Fe-N-C electrocatalysts: capacitive behavior and oxygen reduction reaction activity in alkaline medium. Journal of Solid State Electrochemistry, 20(12), 3507-3523. doi:10.1007/s10008-016-3332-2 es_ES
dc.description.references Ballesteros-Garrido, R., de Miguel, M., Doménech-Carbó, A., Alvaro, M., & Garcia, H. (2013). Tunability by alkali metal cations of photoinduced charge separation in azacrown functionalized graphene. Chemical Communications, 49(31), 3236. doi:10.1039/c3cc39145k es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem