- -

A New Adaptive Image Interpolation Method to Define the Shoreline at Sub-Pixel Level

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

A New Adaptive Image Interpolation Method to Define the Shoreline at Sub-Pixel Level

Show full item record

Sánchez-García, E.; Balaguer-Beser, Á.; Almonacid-Caballer, J.; Pardo Pascual, JE. (2019). A New Adaptive Image Interpolation Method to Define the Shoreline at Sub-Pixel Level. Remote Sensing. 11(16):1-28. https://doi.org/10.3390/rs11161880

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/168877

Files in this item

Item Metadata

Title: A New Adaptive Image Interpolation Method to Define the Shoreline at Sub-Pixel Level
Author: Sánchez-García, Elena Balaguer-Beser, Ángel Almonacid-Caballer, Jaime Pardo Pascual, Josep Eliseu
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient
Universitat Politècnica de València. Departamento de Ingeniería Cartográfica Geodesia y Fotogrametría - Departament d'Enginyeria Cartogràfica, Geodèsia i Fotogrametria
Issued date:
Abstract:
[EN] This paper presents a new methodological process for detecting the instantaneous land-water border at sub-pixel level from mid-resolution satellite images (30 m/pixel) that are freely available worldwide. The new ...[+]
Subjects: Shoreline sub-pixel detection , Satellite images , Adaptive interpolation , Coastal management
Copyrigths: Reserva de todos los derechos
Source:
Remote Sensing. (issn: 2072-4292 )
DOI: 10.3390/rs11161880
Publisher:
MDPI AG
Publisher version: https://doi.org/10.3390/rs11161880
Project ID:
info:eu-repo/grantAgreement/MINECO//CGL2015-69906-R/ES/MONITORIZACION DE LOS CAMBIOS COSTEROS MEDIANTE TELEDETECCION PARA MITIGAR LOS IMPACTOS DEL CAMBIO CLIMATICO/
Thanks:
This study is part of the PhD dissertation of E. Sanchez-Garcia, which was supported by a grant from the Spanish Ministry of Education, Culture and Sports (I + D + i 2013-2016). The authors also appreciate the financial ...[+]
Type: Artículo

References

Szmytkiewicz, M., Biegowski, J., Kaczmarek, L. M., Okrój, T., Ostrowski, R., Pruszak, Z., … Skaja, M. (2000). Coastline changes nearby harbour structures: comparative analysis of one-line models versus field data. Coastal Engineering, 40(2), 119-139. doi:10.1016/s0378-3839(00)00008-9

Furmańczyk, K., Andrzejewski, P., Benedyczak, R., Bugajny, N., Cieszyński, Ł., Dudzińska-Nowak, J., … Zawiślak, T. (2014). Recording of selected effects and hazards caused by current and expected storm events in the Baltic Sea coastal zone. Journal of Coastal Research, 70, 338-342. doi:10.2112/si70-057.1

Deng, J., Harff, J., Zhang, W., Schneider, R., Dudzińska-Nowak, J., Giza, A., … Furmańczyk, K. (2017). The Dynamic Equilibrium Shore Model for the Reconstruction and Future Projection of Coastal Morphodynamics. Coastal Research Library, 87-106. doi:10.1007/978-3-319-49894-2_6 [+]
Szmytkiewicz, M., Biegowski, J., Kaczmarek, L. M., Okrój, T., Ostrowski, R., Pruszak, Z., … Skaja, M. (2000). Coastline changes nearby harbour structures: comparative analysis of one-line models versus field data. Coastal Engineering, 40(2), 119-139. doi:10.1016/s0378-3839(00)00008-9

Furmańczyk, K., Andrzejewski, P., Benedyczak, R., Bugajny, N., Cieszyński, Ł., Dudzińska-Nowak, J., … Zawiślak, T. (2014). Recording of selected effects and hazards caused by current and expected storm events in the Baltic Sea coastal zone. Journal of Coastal Research, 70, 338-342. doi:10.2112/si70-057.1

Deng, J., Harff, J., Zhang, W., Schneider, R., Dudzińska-Nowak, J., Giza, A., … Furmańczyk, K. (2017). The Dynamic Equilibrium Shore Model for the Reconstruction and Future Projection of Coastal Morphodynamics. Coastal Research Library, 87-106. doi:10.1007/978-3-319-49894-2_6

Paprotny, D., Andrzejewski, P., Terefenko, P., & Furmańczyk, K. (2014). Application of Empirical Wave Run-Up Formulas to the Polish Baltic Sea Coast. PLoS ONE, 9(8), e105437. doi:10.1371/journal.pone.0105437

Roelvink, D., Reniers, A., van Dongeren, A., van Thiel de Vries, J., McCall, R., & Lescinski, J. (2009). Modelling storm impacts on beaches, dunes and barrier islands. Coastal Engineering, 56(11-12), 1133-1152. doi:10.1016/j.coastaleng.2009.08.006

Kostrzewski, A., Zwoliński, Z., Winowski, M., Tylkowski, J., & Samołyk, M. (2015). Cliff top recession rate and cliff hazards for the sea coast of Wolin Island (Southern Baltic). Baltica, 28(2), 109-120. doi:10.5200/baltica.2015.28.10

Terefenko, P., Zelaya Wziątek, D., Dalyot, S., Boski, T., & Pinheiro Lima-Filho, F. (2018). A High-Precision LiDAR-Based Method for Surveying and Classifying Coastal Notches. ISPRS International Journal of Geo-Information, 7(8), 295. doi:10.3390/ijgi7080295

Terefenko, P., Paprotny, D., Giza, A., Morales-Nápoles, O., Kubicki, A., & Walczakiewicz, S. (2019). Monitoring Cliff Erosion with LiDAR Surveys and Bayesian Network-based Data Analysis. Remote Sensing, 11(7), 843. doi:10.3390/rs11070843

Kolander, R., Morche, D., & Bimböse, M. (2013). Quantification of moraine cliff coast erosion on Wolin Island (Baltic Sea, northwest Poland). Baltica, 26(1), 37-44. doi:10.5200/baltica.2013.26.04

Moore, L. J., Ruggiero, P., & List, J. H. (2006). Comparing Mean High Water and High Water Line Shorelines: Should Proxy-Datum Offsets be Incorporated into Shoreline Change Analysis? Journal of Coastal Research, 224, 894-905. doi:10.2112/04-0401.1

Davidson, M., Van Koningsveld, M., de Kruif, A., Rawson, J., Holman, R., Lamberti, A., … Aarninkhof, S. (2007). The CoastView project: Developing video-derived Coastal State Indicators in support of coastal zone management. Coastal Engineering, 54(6-7), 463-475. doi:10.1016/j.coastaleng.2007.01.007

Aarninkhof, S. G. ., Turner, I. L., Dronkers, T. D. ., Caljouw, M., & Nipius, L. (2003). A video-based technique for mapping intertidal beach bathymetry. Coastal Engineering, 49(4), 275-289. doi:10.1016/s0378-3839(03)00064-4

Andriolo, U., Sánchez-García, E., & Taborda, R. (2019). Operational Use of Surfcam Online Streaming Images for Coastal Morphodynamic Studies. Remote Sensing, 11(1), 78. doi:10.3390/rs11010078

Sánchez-García, E., Balaguer-Beser, A., & Pardo-Pascual, J. E. (2017). C-Pro: A coastal projector monitoring system using terrestrial photogrammetry with a geometric horizon constraint. ISPRS Journal of Photogrammetry and Remote Sensing, 128, 255-273. doi:10.1016/j.isprsjprs.2017.03.023

Holman, R. A., & Stanley, J. (2007). The history and technical capabilities of Argus. Coastal Engineering, 54(6-7), 477-491. doi:10.1016/j.coastaleng.2007.01.003

Sagar, S., Roberts, D., Bala, B., & Lymburner, L. (2017). Extracting the intertidal extent and topography of the Australian coastline from a 28 year time series of Landsat observations. Remote Sensing of Environment, 195, 153-169. doi:10.1016/j.rse.2017.04.009

Luijendijk, A., Hagenaars, G., Ranasinghe, R., Baart, F., Donchyts, G., & Aarninkhof, S. (2018). The State of the World’s Beaches. Scientific Reports, 8(1). doi:10.1038/s41598-018-24630-6

Li, J., & Roy, D. (2017). A Global Analysis of Sentinel-2A, Sentinel-2B and Landsat-8 Data Revisit Intervals and Implications for Terrestrial Monitoring. Remote Sensing, 9(9), 902. doi:10.3390/rs9090902

Boak, E. H., & Turner, I. L. (2005). Shoreline Definition and Detection: A Review. Journal of Coastal Research, 214, 688-703. doi:10.2112/03-0071.1

Gens, R. (2010). Remote sensing of coastlines: detection, extraction and monitoring. International Journal of Remote Sensing, 31(7), 1819-1836. doi:10.1080/01431160902926673

Liu, H., Wang, L., Sherman, D. J., Wu, Q., & Su, H. (2011). Algorithmic Foundation and Software Tools for Extracting Shoreline Features from Remote Sensing Imagery and LiDAR Data. Journal of Geographic Information System, 03(02), 99-119. doi:10.4236/jgis.2011.32007

Pardo-Pascual, J. E., Almonacid-Caballer, J., Ruiz, L. A., & Palomar-Vázquez, J. (2012). Automatic extraction of shorelines from Landsat TM and ETM+ multi-temporal images with subpixel precision. Remote Sensing of Environment, 123, 1-11. doi:10.1016/j.rse.2012.02.024

Pardo-Pascual, J. E., Almonacid-Caballer, J., Ruiz, L. A., Palomar-Vázquez, J., & Rodrigo-Alemany, R. (2014). Evaluation of storm impact on sandy beaches of the Gulf of Valencia using Landsat imagery series. Geomorphology, 214, 388-401. doi:10.1016/j.geomorph.2014.02.020

Almonacid-Caballer, J., Sánchez-García, E., Pardo-Pascual, J. E., Balaguer-Beser, A. A., & Palomar-Vázquez, J. (2016). Evaluation of annual mean shoreline position deduced from Landsat imagery as a mid-term coastal evolution indicator. Marine Geology, 372, 79-88. doi:10.1016/j.margeo.2015.12.015

Sánchez-García, E., Pardo-Pascual, J. E., Balaguer-Beser, A., & Almonacid-Caballer, J. (2015). ANALYSIS OF THE SHORELINE POSITION EXTRACTED FROM LANDSAT TM AND ETM+ IMAGERY. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-7/W3, 991-998. doi:10.5194/isprsarchives-xl-7-w3-991-2015

Pardo-Pascual, J., Sánchez-García, E., Almonacid-Caballer, J., Palomar-Vázquez, J., Priego de los Santos, E., Fernández-Sarría, A., & Balaguer-Beser, Á. (2018). Assessing the Accuracy of Automatically Extracted Shorelines on Microtidal Beaches from Landsat 7, Landsat 8 and Sentinel-2 Imagery. Remote Sensing, 10(2), 326. doi:10.3390/rs10020326

Almonacid-Caballer, J., Pardo-Pascual, J., & Ruiz, L. (2017). Evaluating Fourier Cross-Correlation Sub-Pixel Registration in Landsat Images. Remote Sensing, 9(10), 1051. doi:10.3390/rs9101051

Liu, Q., Trinder, J., & Turner, I. (2016). A COMPARISON OF SUB-PIXEL MAPPING METHODS FOR COASTAL AREAS. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, III-7, 67-74. doi:10.5194/isprsannals-iii-7-67-2016

Liu, Y., Wang, X., Ling, F., Xu, S., & Wang, C. (2017). Analysis of Coastline Extraction from Landsat-8 OLI Imagery. Water, 9(11), 816. doi:10.3390/w9110816

Liu, Q., Trinder, J., & Turner, I. L. (2017). Automatic super-resolution shoreline change monitoring using Landsat archival data: a case study at Narrabeen–Collaroy Beach, Australia. Journal of Applied Remote Sensing, 11(1), 016036. doi:10.1117/1.jrs.11.016036

Cipolletti, M. P., Delrieux, C. A., Perillo, G. M. E., & Cintia Piccolo, M. (2012). Superresolution border segmentation and measurement in remote sensing images. Computers & Geosciences, 40, 87-96. doi:10.1016/j.cageo.2011.07.015

Liu, H., & Jezek, K. C. (2004). Automated extraction of coastline from satellite imagery by integrating Canny edge detection and locally adaptive thresholding methods. International Journal of Remote Sensing, 25(5), 937-958. doi:10.1080/0143116031000139890

Hermosilla, T., Bermejo, E., Balaguer, A., & Ruiz, L. A. (2008). Non-linear fourth-order image interpolation for subpixel edge detection and localization. Image and Vision Computing, 26(9), 1240-1248. doi:10.1016/j.imavis.2008.02.012

Harten, A., Engquist, B., Osher, S., & Chakravarthy, S. R. (1987). Uniformly high order accurate essentially non-oscillatory schemes, III. Journal of Computational Physics, 71(2), 231-303. doi:10.1016/0021-9991(87)90031-3

Shu, C.-W., & Osher, S. (1988). Efficient implementation of essentially non-oscillatory shock-capturing schemes. Journal of Computational Physics, 77(2), 439-471. doi:10.1016/0021-9991(88)90177-5

Capilla, M. T., & Balaguer-Beser, A. (2013). A new well-balanced non-oscillatory central scheme for the shallow water equations on rectangular meshes. Journal of Computational and Applied Mathematics, 252, 62-74. doi:10.1016/j.cam.2013.01.014

Balaguer, Á., & Conde, C. (2005). Fourth-Order Nonoscillatory Upwind and Central Schemes for Hyperbolic Conservation Laws. SIAM Journal on Numerical Analysis, 43(2), 455-473. doi:10.1137/s0036142903437106

Xu, N. (2018). Detecting Coastline Change with All Available Landsat Data over 1986–2015: A Case Study for the State of Texas, USA. Atmosphere, 9(3), 107. doi:10.3390/atmos9030107

Balaguer, A., Conde, C., López, J. A., & Martínez, V. (2001). A finite volume method with a modified ENO scheme using a Hermite interpolation to solve advection diffusion equations. International Journal for Numerical Methods in Engineering, 50(10), 2339-2371. doi:10.1002/nme.123

Press, W. H., & Teukolsky, S. A. (1990). Savitzky-Golay Smoothing Filters. Computers in Physics, 4(6), 669. doi:10.1063/1.4822961

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record