- -

A New Adaptive Image Interpolation Method to Define the Shoreline at Sub-Pixel Level

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A New Adaptive Image Interpolation Method to Define the Shoreline at Sub-Pixel Level

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sánchez-García, Elena es_ES
dc.contributor.author Balaguer-Beser, Ángel es_ES
dc.contributor.author Almonacid-Caballer, Jaime es_ES
dc.contributor.author Pardo Pascual, Josep Eliseu es_ES
dc.date.accessioned 2021-07-07T03:31:06Z
dc.date.available 2021-07-07T03:31:06Z
dc.date.issued 2019-08-12 es_ES
dc.identifier.issn 2072-4292 es_ES
dc.identifier.uri http://hdl.handle.net/10251/168877
dc.description.abstract [EN] This paper presents a new methodological process for detecting the instantaneous land-water border at sub-pixel level from mid-resolution satellite images (30 m/pixel) that are freely available worldwide. The new method is based on using an iterative procedure to compute Laplacian roots of a polynomial surface that represents the radiometric response of a set of pixels. The method uses a first approximation of the shoreline at pixel level (initial pixels) and selects a set of neighbouring pixels to be part of the analysis window. This adaptive window collects those stencils in which the maximum radiometric variations are found by using the information given by divided differences. Therefore, the land-water surface is computed by a piecewise interpolating polynomial that models the strong radiometric changes between both interfaces. The assessment is tested on two coastal areas to analyse how their inherent differences may affect the method. A total of 17 Landsat 7 and 8 images (L7 and L8) were used to extract the shorelines and compare them against other highly accurate lines that act as references. Accurate quantitative coastal data from the satellite images is obtained with a mean horizontal error of 4.38 +/- 5.66 m and 1.79 +/- 2.78 m, respectively, for L7 and L8. Prior methodologies to reach the sub-pixel shoreline are analysed and the results verify the solvency of the one proposed. es_ES
dc.description.sponsorship This study is part of the PhD dissertation of E. Sanchez-Garcia, which was supported by a grant from the Spanish Ministry of Education, Culture and Sports (I + D + i 2013-2016). The authors also appreciate the financial support provided by the Spanish Ministry of Economy and Competitiveness (CGL2015-69906-R) es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Remote Sensing es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Shoreline sub-pixel detection es_ES
dc.subject Satellite images es_ES
dc.subject Adaptive interpolation es_ES
dc.subject Coastal management es_ES
dc.subject.classification INGENIERIA CARTOGRAFICA, GEODESIA Y FOTOGRAMETRIA es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title A New Adaptive Image Interpolation Method to Define the Shoreline at Sub-Pixel Level es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/rs11161880 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CGL2015-69906-R/ES/MONITORIZACION DE LOS CAMBIOS COSTEROS MEDIANTE TELEDETECCION PARA MITIGAR LOS IMPACTOS DEL CAMBIO CLIMATICO/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Cartográfica Geodesia y Fotogrametría - Departament d'Enginyeria Cartogràfica, Geodèsia i Fotogrametria es_ES
dc.description.bibliographicCitation Sánchez-García, E.; Balaguer-Beser, Á.; Almonacid-Caballer, J.; Pardo Pascual, JE. (2019). A New Adaptive Image Interpolation Method to Define the Shoreline at Sub-Pixel Level. Remote Sensing. 11(16):1-28. https://doi.org/10.3390/rs11161880 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/rs11161880 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 28 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 16 es_ES
dc.relation.pasarela S\392294 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Szmytkiewicz, M., Biegowski, J., Kaczmarek, L. M., Okrój, T., Ostrowski, R., Pruszak, Z., … Skaja, M. (2000). Coastline changes nearby harbour structures: comparative analysis of one-line models versus field data. Coastal Engineering, 40(2), 119-139. doi:10.1016/s0378-3839(00)00008-9 es_ES
dc.description.references Furmańczyk, K., Andrzejewski, P., Benedyczak, R., Bugajny, N., Cieszyński, Ł., Dudzińska-Nowak, J., … Zawiślak, T. (2014). Recording of selected effects and hazards caused by current and expected storm events in the Baltic Sea coastal zone. Journal of Coastal Research, 70, 338-342. doi:10.2112/si70-057.1 es_ES
dc.description.references Deng, J., Harff, J., Zhang, W., Schneider, R., Dudzińska-Nowak, J., Giza, A., … Furmańczyk, K. (2017). The Dynamic Equilibrium Shore Model for the Reconstruction and Future Projection of Coastal Morphodynamics. Coastal Research Library, 87-106. doi:10.1007/978-3-319-49894-2_6 es_ES
dc.description.references Paprotny, D., Andrzejewski, P., Terefenko, P., & Furmańczyk, K. (2014). Application of Empirical Wave Run-Up Formulas to the Polish Baltic Sea Coast. PLoS ONE, 9(8), e105437. doi:10.1371/journal.pone.0105437 es_ES
dc.description.references Roelvink, D., Reniers, A., van Dongeren, A., van Thiel de Vries, J., McCall, R., & Lescinski, J. (2009). Modelling storm impacts on beaches, dunes and barrier islands. Coastal Engineering, 56(11-12), 1133-1152. doi:10.1016/j.coastaleng.2009.08.006 es_ES
dc.description.references Kostrzewski, A., Zwoliński, Z., Winowski, M., Tylkowski, J., & Samołyk, M. (2015). Cliff top recession rate and cliff hazards for the sea coast of Wolin Island (Southern Baltic). Baltica, 28(2), 109-120. doi:10.5200/baltica.2015.28.10 es_ES
dc.description.references Terefenko, P., Zelaya Wziątek, D., Dalyot, S., Boski, T., & Pinheiro Lima-Filho, F. (2018). A High-Precision LiDAR-Based Method for Surveying and Classifying Coastal Notches. ISPRS International Journal of Geo-Information, 7(8), 295. doi:10.3390/ijgi7080295 es_ES
dc.description.references Terefenko, P., Paprotny, D., Giza, A., Morales-Nápoles, O., Kubicki, A., & Walczakiewicz, S. (2019). Monitoring Cliff Erosion with LiDAR Surveys and Bayesian Network-based Data Analysis. Remote Sensing, 11(7), 843. doi:10.3390/rs11070843 es_ES
dc.description.references Kolander, R., Morche, D., & Bimböse, M. (2013). Quantification of moraine cliff coast erosion on Wolin Island (Baltic Sea, northwest Poland). Baltica, 26(1), 37-44. doi:10.5200/baltica.2013.26.04 es_ES
dc.description.references Moore, L. J., Ruggiero, P., & List, J. H. (2006). Comparing Mean High Water and High Water Line Shorelines: Should Proxy-Datum Offsets be Incorporated into Shoreline Change Analysis? Journal of Coastal Research, 224, 894-905. doi:10.2112/04-0401.1 es_ES
dc.description.references Davidson, M., Van Koningsveld, M., de Kruif, A., Rawson, J., Holman, R., Lamberti, A., … Aarninkhof, S. (2007). The CoastView project: Developing video-derived Coastal State Indicators in support of coastal zone management. Coastal Engineering, 54(6-7), 463-475. doi:10.1016/j.coastaleng.2007.01.007 es_ES
dc.description.references Aarninkhof, S. G. ., Turner, I. L., Dronkers, T. D. ., Caljouw, M., & Nipius, L. (2003). A video-based technique for mapping intertidal beach bathymetry. Coastal Engineering, 49(4), 275-289. doi:10.1016/s0378-3839(03)00064-4 es_ES
dc.description.references Andriolo, U., Sánchez-García, E., & Taborda, R. (2019). Operational Use of Surfcam Online Streaming Images for Coastal Morphodynamic Studies. Remote Sensing, 11(1), 78. doi:10.3390/rs11010078 es_ES
dc.description.references Sánchez-García, E., Balaguer-Beser, A., & Pardo-Pascual, J. E. (2017). C-Pro: A coastal projector monitoring system using terrestrial photogrammetry with a geometric horizon constraint. ISPRS Journal of Photogrammetry and Remote Sensing, 128, 255-273. doi:10.1016/j.isprsjprs.2017.03.023 es_ES
dc.description.references Holman, R. A., & Stanley, J. (2007). The history and technical capabilities of Argus. Coastal Engineering, 54(6-7), 477-491. doi:10.1016/j.coastaleng.2007.01.003 es_ES
dc.description.references Sagar, S., Roberts, D., Bala, B., & Lymburner, L. (2017). Extracting the intertidal extent and topography of the Australian coastline from a 28 year time series of Landsat observations. Remote Sensing of Environment, 195, 153-169. doi:10.1016/j.rse.2017.04.009 es_ES
dc.description.references Luijendijk, A., Hagenaars, G., Ranasinghe, R., Baart, F., Donchyts, G., & Aarninkhof, S. (2018). The State of the World’s Beaches. Scientific Reports, 8(1). doi:10.1038/s41598-018-24630-6 es_ES
dc.description.references Li, J., & Roy, D. (2017). A Global Analysis of Sentinel-2A, Sentinel-2B and Landsat-8 Data Revisit Intervals and Implications for Terrestrial Monitoring. Remote Sensing, 9(9), 902. doi:10.3390/rs9090902 es_ES
dc.description.references Boak, E. H., & Turner, I. L. (2005). Shoreline Definition and Detection: A Review. Journal of Coastal Research, 214, 688-703. doi:10.2112/03-0071.1 es_ES
dc.description.references Gens, R. (2010). Remote sensing of coastlines: detection, extraction and monitoring. International Journal of Remote Sensing, 31(7), 1819-1836. doi:10.1080/01431160902926673 es_ES
dc.description.references Liu, H., Wang, L., Sherman, D. J., Wu, Q., & Su, H. (2011). Algorithmic Foundation and Software Tools for Extracting Shoreline Features from Remote Sensing Imagery and LiDAR Data. Journal of Geographic Information System, 03(02), 99-119. doi:10.4236/jgis.2011.32007 es_ES
dc.description.references Pardo-Pascual, J. E., Almonacid-Caballer, J., Ruiz, L. A., & Palomar-Vázquez, J. (2012). Automatic extraction of shorelines from Landsat TM and ETM+ multi-temporal images with subpixel precision. Remote Sensing of Environment, 123, 1-11. doi:10.1016/j.rse.2012.02.024 es_ES
dc.description.references Pardo-Pascual, J. E., Almonacid-Caballer, J., Ruiz, L. A., Palomar-Vázquez, J., & Rodrigo-Alemany, R. (2014). Evaluation of storm impact on sandy beaches of the Gulf of Valencia using Landsat imagery series. Geomorphology, 214, 388-401. doi:10.1016/j.geomorph.2014.02.020 es_ES
dc.description.references Almonacid-Caballer, J., Sánchez-García, E., Pardo-Pascual, J. E., Balaguer-Beser, A. A., & Palomar-Vázquez, J. (2016). Evaluation of annual mean shoreline position deduced from Landsat imagery as a mid-term coastal evolution indicator. Marine Geology, 372, 79-88. doi:10.1016/j.margeo.2015.12.015 es_ES
dc.description.references Sánchez-García, E., Pardo-Pascual, J. E., Balaguer-Beser, A., & Almonacid-Caballer, J. (2015). ANALYSIS OF THE SHORELINE POSITION EXTRACTED FROM LANDSAT TM AND ETM+ IMAGERY. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-7/W3, 991-998. doi:10.5194/isprsarchives-xl-7-w3-991-2015 es_ES
dc.description.references Pardo-Pascual, J., Sánchez-García, E., Almonacid-Caballer, J., Palomar-Vázquez, J., Priego de los Santos, E., Fernández-Sarría, A., & Balaguer-Beser, Á. (2018). Assessing the Accuracy of Automatically Extracted Shorelines on Microtidal Beaches from Landsat 7, Landsat 8 and Sentinel-2 Imagery. Remote Sensing, 10(2), 326. doi:10.3390/rs10020326 es_ES
dc.description.references Almonacid-Caballer, J., Pardo-Pascual, J., & Ruiz, L. (2017). Evaluating Fourier Cross-Correlation Sub-Pixel Registration in Landsat Images. Remote Sensing, 9(10), 1051. doi:10.3390/rs9101051 es_ES
dc.description.references Liu, Q., Trinder, J., & Turner, I. (2016). A COMPARISON OF SUB-PIXEL MAPPING METHODS FOR COASTAL AREAS. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, III-7, 67-74. doi:10.5194/isprsannals-iii-7-67-2016 es_ES
dc.description.references Liu, Y., Wang, X., Ling, F., Xu, S., & Wang, C. (2017). Analysis of Coastline Extraction from Landsat-8 OLI Imagery. Water, 9(11), 816. doi:10.3390/w9110816 es_ES
dc.description.references Liu, Q., Trinder, J., & Turner, I. L. (2017). Automatic super-resolution shoreline change monitoring using Landsat archival data: a case study at Narrabeen–Collaroy Beach, Australia. Journal of Applied Remote Sensing, 11(1), 016036. doi:10.1117/1.jrs.11.016036 es_ES
dc.description.references Cipolletti, M. P., Delrieux, C. A., Perillo, G. M. E., & Cintia Piccolo, M. (2012). Superresolution border segmentation and measurement in remote sensing images. Computers & Geosciences, 40, 87-96. doi:10.1016/j.cageo.2011.07.015 es_ES
dc.description.references Liu, H., & Jezek, K. C. (2004). Automated extraction of coastline from satellite imagery by integrating Canny edge detection and locally adaptive thresholding methods. International Journal of Remote Sensing, 25(5), 937-958. doi:10.1080/0143116031000139890 es_ES
dc.description.references Hermosilla, T., Bermejo, E., Balaguer, A., & Ruiz, L. A. (2008). Non-linear fourth-order image interpolation for subpixel edge detection and localization. Image and Vision Computing, 26(9), 1240-1248. doi:10.1016/j.imavis.2008.02.012 es_ES
dc.description.references Harten, A., Engquist, B., Osher, S., & Chakravarthy, S. R. (1987). Uniformly high order accurate essentially non-oscillatory schemes, III. Journal of Computational Physics, 71(2), 231-303. doi:10.1016/0021-9991(87)90031-3 es_ES
dc.description.references Shu, C.-W., & Osher, S. (1988). Efficient implementation of essentially non-oscillatory shock-capturing schemes. Journal of Computational Physics, 77(2), 439-471. doi:10.1016/0021-9991(88)90177-5 es_ES
dc.description.references Capilla, M. T., & Balaguer-Beser, A. (2013). A new well-balanced non-oscillatory central scheme for the shallow water equations on rectangular meshes. Journal of Computational and Applied Mathematics, 252, 62-74. doi:10.1016/j.cam.2013.01.014 es_ES
dc.description.references Balaguer, Á., & Conde, C. (2005). Fourth-Order Nonoscillatory Upwind and Central Schemes for Hyperbolic Conservation Laws. SIAM Journal on Numerical Analysis, 43(2), 455-473. doi:10.1137/s0036142903437106 es_ES
dc.description.references Xu, N. (2018). Detecting Coastline Change with All Available Landsat Data over 1986–2015: A Case Study for the State of Texas, USA. Atmosphere, 9(3), 107. doi:10.3390/atmos9030107 es_ES
dc.description.references Balaguer, A., Conde, C., López, J. A., & Martínez, V. (2001). A finite volume method with a modified ENO scheme using a Hermite interpolation to solve advection diffusion equations. International Journal for Numerical Methods in Engineering, 50(10), 2339-2371. doi:10.1002/nme.123 es_ES
dc.description.references Press, W. H., & Teukolsky, S. A. (1990). Savitzky-Golay Smoothing Filters. Computers in Physics, 4(6), 669. doi:10.1063/1.4822961 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem