- -

Maternal Transmission Ratio Distortion in two Iberian pig varieties

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Maternal Transmission Ratio Distortion in two Iberian pig varieties

Show full item record

Vazquez-Gomez, M.; Martín De Hijas-Villalba, M.; Varona, L.; Ibáñez-Escriche, N.; Rosas, JP.; Negro, S.; Noguera, JL.... (2020). Maternal Transmission Ratio Distortion in two Iberian pig varieties. Genes. 11(9):1-18. https://doi.org/10.3390/genes11091050

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/168946

Files in this item

Item Metadata

Title: Maternal Transmission Ratio Distortion in two Iberian pig varieties
Author: Vazquez-Gomez, Marta Martín de Hijas-Villalba, Melani Varona, Luis Ibáñez-Escriche, Noelia Rosas, Juan Pablo Negro, Sara Noguera, Jose Luis Casellas, Joaquim
UPV Unit: Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal
Issued date:
Abstract:
[EN] Transmission ratio distortion (TRD) is defined as the allele transmission deviation from the heterozygous parent to the offspring from the expected Mendelian genotypic frequencies. Although TRD can be a confounding ...[+]
Subjects: Sus scrofa , Genome scan , Maximum likelihood , Segregation distortion , Ungenotyped parents
Copyrigths: Reconocimiento (by)
Source:
Genes. (eissn: 2073-4425 )
DOI: 10.3390/genes11091050
Publisher:
MDPI
Publisher version: https://doi.org/10.3390/genes11091050
Project ID:
info:eu-repo/grantAgreement/MINECO//CGL2016-80155-R/ES/ANALISIS ¿OMICO¿ DE CARACTERES REPRODUCTIVOS EN UN CRUCE DIAELICO ENTRE TRES ESTIRPES DE CERDO IBERICO/
info:eu-repo/grantAgreement/MCIU//IDI-20170304/ES/Mejora de la eficiencia productiva y de la calidad de la carne en el programa piramidal de mejora genética de ibérico 'Castúa/
Thanks:
The Spanish Government funded this research, grants number CGL2016-80155-R, and IDI-20170304
Type: Artículo

References

Lyttle, T. W. (1991). SEGREGATION DISTORTERS. Annual Review of Genetics, 25(1), 511-581. doi:10.1146/annurev.ge.25.120191.002455

Silver, L. M. (1993). The peculiar journey of a selfish chromosome: mouse t haplotypes and meiotic drive. Trends in Genetics, 9(7), 250-254. doi:10.1016/0168-9525(93)90090-5

Paz-Miguel, J. E., Pardo-Manuel de Villena, F., Sánchez-Velasco, P., & Leyva-Cobián, F. (2001). H2-haplotype-dependent unequal transmission of the 17 16 translocation chromosome from Ts65Dn females. Mammalian Genome, 12(1), 83-85. doi:10.1007/s003350010225 [+]
Lyttle, T. W. (1991). SEGREGATION DISTORTERS. Annual Review of Genetics, 25(1), 511-581. doi:10.1146/annurev.ge.25.120191.002455

Silver, L. M. (1993). The peculiar journey of a selfish chromosome: mouse t haplotypes and meiotic drive. Trends in Genetics, 9(7), 250-254. doi:10.1016/0168-9525(93)90090-5

Paz-Miguel, J. E., Pardo-Manuel de Villena, F., Sánchez-Velasco, P., & Leyva-Cobián, F. (2001). H2-haplotype-dependent unequal transmission of the 17 16 translocation chromosome from Ts65Dn females. Mammalian Genome, 12(1), 83-85. doi:10.1007/s003350010225

Meyer, W. K., Arbeithuber, B., Ober, C., Ebner, T., Tiemann-Boege, I., Hudson, R. R., & Przeworski, M. (2012). Evaluating the Evidence for Transmission Distortion in Human Pedigrees. Genetics, 191(1), 215-232. doi:10.1534/genetics.112.139576

Liu, Y., Zhang, L., Xu, S., Hu, L., Hurst, L. D., & Kong, X. (2013). Identification of Two Maternal Transmission Ratio Distortion Loci in Pedigrees of the Framingham Heart Study. Scientific Reports, 3(1). doi:10.1038/srep02147

Wu, G., Hao, L., Han, Z., Gao, S., Latham, K. E., de Villena, F. P.-M., & Sapienza, C. (2005). Maternal Transmission Ratio Distortion at the Mouse Om Locus Results From Meiotic Drive at the Second Meiotic Division. Genetics, 170(1), 327-334. doi:10.1534/genetics.104.039479

Solignac, M., Vautrin, D., Baudry, E., Mougel, F., Loiseau, A., & Cornuet, J.-M. (2004). A Microsatellite-Based Linkage Map of the Honeybee, Apis mellifera L. Genetics, 167(1), 253-262. doi:10.1534/genetics.167.1.253

Vongs, A., Kakutani, T., Martienssen, R. A., & Richards, E. J. (1993). Arabidopsis thaliana DNA Methylation Mutants. Science, 260(5116), 1926-1928. doi:10.1126/science.8316832

Koide, Y., Onishi, K., Nishimoto, D., Baruah, A. R., Kanazawa, A., & Sano, Y. (2008). Sex‐independent transmission ratio distortion system responsible for reproductive barriers between Asian and African rice species. New Phytologist, 179(3), 888-900. doi:10.1111/j.1469-8137.2008.02490.x

WAKASUGI, N. (1974). A GENETICALLY DETERMINED INCOMPATIBILITY SYSTEM BETWEEN SPERMATOZOA AND EGGS LEADING TO EMBRYONIC DEATH IN MICE. Reproduction, 41(1), 85-96. doi:10.1530/jrf.0.0410085

Agulnik, S. I., Agulnik, A. I., & Ruvinsky, A. O. (1990). Meiotic drive in female mice heterozygous for the HSR inserts on chromosome 1. Genetical Research, 55(2), 97-100. doi:10.1017/s0016672300025325

Dyer, K. A., Charlesworth, B., & Jaenike, J. (2007). Chromosome-wide linkage disequilibrium as a consequence of meiotic drive. Proceedings of the National Academy of Sciences, 104(5), 1587-1592. doi:10.1073/pnas.0605578104

Fishman, L., & McIntosh, M. (2019). Standard Deviations: The Biological Bases of Transmission Ratio Distortion. Annual Review of Genetics, 53(1), 347-372. doi:10.1146/annurev-genet-112618-043905

Huang, L. O., Labbe, A., & Infante-Rivard, C. (2012). Transmission ratio distortion: review of concept and implications for genetic association studies. Human Genetics, 132(3), 245-263. doi:10.1007/s00439-012-1257-0

Lorieux, M., Goffinet, B., Perrier, X., de León, D. G., & Lanaud, C. (1995). Maximum-likelihood models for mapping genetic markers showing segregation distortion. 1. Backcross populations. Theoretical and Applied Genetics, 90(1), 73-80. doi:10.1007/bf00220998

Philipsen, M., & Kristensen, B. (2009). Preliminary evidence of segregation distortion in the SLA system. Animal Blood Groups and Biochemical Genetics, 16(2), 125-133. doi:10.1111/j.1365-2052.1985.tb01460.x

Jeon, J.-T., Carlborg, Ö., Törnsten, A., Giuffra, E., Amarger, V., Chardon, P., … Andersson, L. (1999). A paternally expressed QTL affecting skeletal and cardiac muscle mass in pigs maps to the IGF2 locus. Nature Genetics, 21(2), 157-158. doi:10.1038/5938

Pinton, A., Calgaro, A., Bonnet, N., Ferchaud, S., Billoux, S., Dudez, A. M., … Ducos, A. (2009). Influence of sex on the meiotic segregation of a t(13;17) Robertsonian translocation: a case study in the pig. Human Reproduction, 24(8), 2034-2043. doi:10.1093/humrep/dep118

Casellas, J., Manunza, A., Mercader, A., Quintanilla, R., & Amills, M. (2014). A Flexible Bayesian Model for Testing for Transmission Ratio Distortion. Genetics, 198(4), 1357-1367. doi:10.1534/genetics.114.169607

Casellas, J., Gularte, R. J., Farber, C. R., Varona, L., Mehrabian, M., Schadt, E. E., … Medrano, J. F. (2012). Genome Scans for Transmission Ratio Distortion Regions in Mice. Genetics, 191(1), 247-259. doi:10.1534/genetics.111.135988

Shendure, J., Melo, J. A., Pociask, K., Derr, R., & Silver, L. M. (1998). Sex-restricted non-Mendelian inheritance of mouse Chromosome 11 in the offspring of crosses between C57BL/6J and (C57BL/6J × DBA/2J)F 1 mice. Mammalian Genome, 9(10), 812-815. doi:10.1007/s003359900872

Huang, L. O., Infante-Rivard, C., & Labbe, A. (2016). Analysis of Case-Parent Trios Using a Loglinear Model with Adjustment for Transmission Ratio Distortion. Frontiers in Genetics, 7. doi:10.3389/fgene.2016.00155

Lopez-Bote, C. (1998). Sustained Utilization of the Iberian Pig Breed. Meat Science, 49, S17-S27. doi:10.1016/s0309-1740(98)00072-2

Ibáñez-Escriche, N., Varona, L., Magallón, E., & Noguera, J. L. (2014). Crossbreeding effects on pig growth and carcass traits from two Iberian strains. Animal, 8(10), 1569-1576. doi:10.1017/s1751731114001712

Esteve-Codina, A., Kofler, R., Himmelbauer, H., Ferretti, L., Vivancos, A. P., Groenen, M. A. M., … Pérez-Enciso, M. (2011). Partial short-read sequencing of a highly inbred Iberian pig and genomics inference thereof. Heredity, 107(3), 256-264. doi:10.1038/hdy.2011.13

Vázquez-Gómez, M., García-Contreras, C., Astiz, S., Torres-Rovira, L., Fernández-Moya, E., Olivares, Á., … Isabel, B. (2020). Piglet birthweight and sex affect growth performance and fatty acid composition in fatty pigs. Animal Production Science, 60(4), 573. doi:10.1071/an18254

Laval, G., Iannuccelli, N., Legault, C., Milan, D., Groenen, M. A., Giuffra, E., … Ollivier, L. (2000). Genetic diversity of eleven European pig breeds. Genetics Selection Evolution, 32(2), 187. doi:10.1186/1297-9686-32-2-187

Fabuel, E., Barragán, C., Silió, L., Rodríguez, M. C., & Toro, M. A. (2004). Analysis of genetic diversity and conservation priorities in Iberian pigs based on microsatellite markers. Heredity, 93(1), 104-113. doi:10.1038/sj.hdy.6800488

Alonso, I., Ibáñez-Escriche, N., Noguera, J. L., Casellas, J., Martín de Hijas-Villalba, M., Gracia-Santana, M. J., & Varona, L. (2020). Genomic differentiation among varieties of Iberian pig. Spanish Journal of Agricultural Research, 18(1), e0401. doi:10.5424/sjar/2020181-15411

Ibáñez-Escriche, N., Magallón, E., Gonzalez, E., Tejeda, J. F., & Noguera, J. L. (2016). Genetic parameters and crossbreeding effects of fat deposition and fatty acid profiles in Iberian pig lines1. Journal of Animal Science, 94(1), 28-37. doi:10.2527/jas.2015-9433

Pena, R. N., Noguera, J. L., García-Santana, M. J., González, E., Tejeda, J. F., Ros-Freixedes, R., & Ibáñez-Escriche, N. (2019). Five genomic regions have a major impact on fat composition in Iberian pigs. Scientific Reports, 9(1). doi:10.1038/s41598-019-38622-7

Noguera, J. L., Ibáñez-Escriche, N., Casellas, J., Rosas, J. P., & Varona, L. (2019). Genetic parameters and direct, maternal and heterosis effects on litter size in a diallel cross among three commercial varieties of Iberian pig. Animal, 13(12), 2765-2772. doi:10.1017/s1751731119001125

Casellas, J., Ibáñez-Escriche, N., Varona, L., Rosas, J. P., & Noguera, J. L. (2019). Inbreeding depression load for litter size in Entrepelado and Retinto Iberian pig varieties1. Journal of Animal Science, 97(5), 1979-1986. doi:10.1093/jas/skz084

Weinberg, C. R., Wilcox, A. J., & Lie, R. T. (1998). A Log-Linear Approach to Case-Parent–Triad Data: Assessing Effects of Disease Genes That Act Either Directly or through Maternal Effects and That May Be Subject to Parental Imprinting. The American Journal of Human Genetics, 62(4), 969-978. doi:10.1086/301802

Benjamini, Y., & Hochberg, Y. (1995). Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society: Series B (Methodological), 57(1), 289-300. doi:10.1111/j.2517-6161.1995.tb02031.x

Haider, S., Ballester, B., Smedley, D., Zhang, J., Rice, P., & Kasprzyk, A. (2009). BioMart Central Portal—unified access to biological data. Nucleic Acids Research, 37(suppl_2), W23-W27. doi:10.1093/nar/gkp265

Mi, H., Huang, X., Muruganujan, A., Tang, H., Mills, C., Kang, D., & Thomas, P. D. (2016). PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Research, 45(D1), D183-D189. doi:10.1093/nar/gkw1138

McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University (Baltimore, MD) https://omim.org/

Sydney School of Veterinary Science https://omia.org/

Kristensen, T. N., & Sørensen, A. C. (2005). Inbreeding – lessons from animal breeding, evolutionary biology and conservation genetics. Animal Science, 80(2), 121-133. doi:10.1079/asc41960121

Bosse, M., Megens, H.-J., Madsen, O., Paudel, Y., Frantz, L. A. F., Schook, L. B., … Groenen, M. A. M. (2012). Regions of Homozygosity in the Porcine Genome: Consequence of Demography and the Recombination Landscape. PLoS Genetics, 8(11), e1003100. doi:10.1371/journal.pgen.1003100

Silió, L., Rodríguez, M. C., Fernández, A., Barragán, C., Benítez, R., Óvilo, C., & Fernández, A. I. (2013). Measuring inbreeding and inbreeding depression on pig growth from pedigree or SNP-derived metrics. Journal of Animal Breeding and Genetics, 130(5), 349-360. doi:10.1111/jbg.12031

Eaves, I. A., Bennett, S. T., Forster, P., Ferber, K. M., Ehrmann, D., Wilson, A. J., … Todd, J. A. (1999). Transmission ratio distortion at the INS-IGF2 VNTR. Nature Genetics, 22(4), 324-325. doi:10.1038/11890

De Villena, F., & Sapienza, C. (2001). Transmission ratio distortion in offspring of heterozygous female carriers of Robertsonian translocations. Human Genetics, 108(1), 31-36. doi:10.1007/s004390000437

Saura, M., Fernández, A., Varona, L., Fernández, A. I., de Cara, M., Barragán, C., & Villanueva, B. (2015). Detecting inbreeding depression for reproductive traits in Iberian pigs using genome-wide data. Genetics Selection Evolution, 47(1), 1. doi:10.1186/s12711-014-0081-5

Hunt, S. E., McLaren, W., Gil, L., Thormann, A., Schuilenburg, H., Sheppard, D., … Cunningham, F. (2018). Ensembl variation resources. Database, 2018. doi:10.1093/database/bay119

Kido, T., Sikora-Wohlfeld, W., Kawashima, M., Kikuchi, S., Kamatani, N., Patwardhan, A., … Butte, A. J. (2018). Are minor alleles more likely to be risk alleles? BMC Medical Genomics, 11(1). doi:10.1186/s12920-018-0322-5

Balick, D. J., Do, R., Cassa, C. A., Reich, D., & Sunyaev, S. R. (2015). Dominance of Deleterious Alleles Controls the Response to a Population Bottleneck. PLOS Genetics, 11(8), e1005436. doi:10.1371/journal.pgen.1005436

Plough, L. V., & Hedgecock, D. (2011). Quantitative Trait Locus Analysis of Stage-Specific Inbreeding Depression in the Pacific Oyster Crassostrea gigas. Genetics, 189(4), 1473-1486. doi:10.1534/genetics.111.131854

Xu, S. (2008). Quantitative Trait Locus Mapping Can Benefit From Segregation Distortion. Genetics, 180(4), 2201-2208. doi:10.1534/genetics.108.090688

Id-Lahoucine, S., Cánovas, A., Jaton, C., Miglior, F., Fonseca, P. A. S., Sargolzaei, M., … Casellas, J. (2019). Implementation of Bayesian methods to identify SNP and haplotype regions with transmission ratio distortion across the whole genome: TRDscan v.1.0. Journal of Dairy Science, 102(4), 3175-3188. doi:10.3168/jds.2018-15296

Schulz, R., Underkoffler, L. A., Collins, J. N., & Oakey, R. J. (2006). Nondisjunction and transmission ratio distortion ofChromosome 2 in a (2.8) Robertsonian translocation mouse strain. Mammalian Genome, 17(3), 239-247. doi:10.1007/s00335-005-0126-8

Eversley, C. D., Clark, T., Xie, Y., Steigerwalt, J., Bell, T. A., de Villena, F. P., & Threadgill, D. W. (2010). Genetic mapping and developmental timing of transmission ratio distortion in a mouse interspecific backcross. BMC Genetics, 11(1). doi:10.1186/1471-2156-11-98

Rugg-Gunn, P. J., Cox, B. J., Ralston, A., & Rossant, J. (2010). Distinct histone modifications in stem cell lines and tissue lineages from the early mouse embryo. Proceedings of the National Academy of Sciences, 107(24), 10783-10790. doi:10.1073/pnas.0914507107

Canovas, S., & Ross, P. J. (2016). Epigenetics in preimplantation mammalian development. Theriogenology, 86(1), 69-79. doi:10.1016/j.theriogenology.2016.04.020

Jambhekar, A., Dhall, A., & Shi, Y. (2019). Roles and regulation of histone methylation in animal development. Nature Reviews Molecular Cell Biology, 20(10), 625-641. doi:10.1038/s41580-019-0151-1

Gonzalez-Bulnes, A., Astiz, S., Ovilo, C., Lopez-Bote, C. J., Torres-Rovira, L., Barbero, A., … Vazquez-Gomez, M. (2016). Developmental Origins of Health and Disease in swine: implications for animal production and biomedical research. Theriogenology, 86(1), 110-119. doi:10.1016/j.theriogenology.2016.03.024

Ishibashi, Y., Kohyama-Koganeya, A., & Hirabayashi, Y. (2013). New insights on glucosylated lipids: Metabolism and functions. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1831(9), 1475-1485. doi:10.1016/j.bbalip.2013.06.001

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record