Mostrar el registro sencillo del ítem
dc.contributor.author | Vazquez-Gomez, Marta | es_ES |
dc.contributor.author | Martín de Hijas-Villalba, Melani | es_ES |
dc.contributor.author | Varona, Luis | es_ES |
dc.contributor.author | Ibáñez-Escriche, Noelia | es_ES |
dc.contributor.author | Rosas, Juan Pablo | es_ES |
dc.contributor.author | Negro, Sara | es_ES |
dc.contributor.author | Noguera, Jose Luis | es_ES |
dc.contributor.author | Casellas, Joaquim | es_ES |
dc.date.accessioned | 2021-07-08T03:31:35Z | |
dc.date.available | 2021-07-08T03:31:35Z | |
dc.date.issued | 2020-09 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/168946 | |
dc.description.abstract | [EN] Transmission ratio distortion (TRD) is defined as the allele transmission deviation from the heterozygous parent to the offspring from the expected Mendelian genotypic frequencies. Although TRD can be a confounding factor in genetic mapping studies, this phenomenon remains mostly unknown in pigs, particularly in traditional breeds (i.e., the Iberian pig). We aimed to describe the maternal TRD prevalence and its genomic distribution in two Iberian varieties. Genotypes from a total of 247 families (dam and offspring) of Entrepelado (n = 129) and Retinto (n = 118) Iberian varieties were analyzed. The offspring were sired by both ungenotyped purebred Retinto and Entrepelado Iberian boars, regardless of the dam variety used. After quality control, 16,246 single-nucleotide polymorphisms (SNPs) in the Entrepelado variety and 9744 SNPs in the Retinto variety were analyzed. Maternal TRD was evaluated by a likelihood ratio test under SNP-by-SNP, adapting a previous model solved by Bayesian inference. Results provided 68 maternal TRD loci (TRDLs) in the Entrepelado variety and 24 in the Retinto variety (q < 0.05), with mostly negative TRD values, increasing the transmission of the minor allele. In addition, both varieties shared ten common TRDLs. No strong evidence of biological effects was found in genes with TRDLs. However, some biological processes could be affected by TRDLs, such as embryogenesis at different levels and lipid metabolism. These findings could provide useful insight into the genetic mechanisms to improve the swine industry, particularly in traditional breeds. | es_ES |
dc.description.sponsorship | The Spanish Government funded this research, grants number CGL2016-80155-R, and IDI-20170304 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI | es_ES |
dc.relation.ispartof | Genes | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Sus scrofa | es_ES |
dc.subject | Genome scan | es_ES |
dc.subject | Maximum likelihood | es_ES |
dc.subject | Segregation distortion | es_ES |
dc.subject | Ungenotyped parents | es_ES |
dc.subject.classification | PRODUCCION ANIMAL | es_ES |
dc.title | Maternal Transmission Ratio Distortion in two Iberian pig varieties | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/genes11091050 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CGL2016-80155-R/ES/ANALISIS ¿OMICO¿ DE CARACTERES REPRODUCTIVOS EN UN CRUCE DIAELICO ENTRE TRES ESTIRPES DE CERDO IBERICO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MCIU//IDI-20170304/ES/Mejora de la eficiencia productiva y de la calidad de la carne en el programa piramidal de mejora genética de ibérico 'Castúa/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal | es_ES |
dc.description.bibliographicCitation | Vazquez-Gomez, M.; Martín De Hijas-Villalba, M.; Varona, L.; Ibáñez-Escriche, N.; Rosas, JP.; Negro, S.; Noguera, JL.... (2020). Maternal Transmission Ratio Distortion in two Iberian pig varieties. Genes. 11(9):1-18. https://doi.org/10.3390/genes11091050 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/genes11091050 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 18 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.description.issue | 9 | es_ES |
dc.identifier.eissn | 2073-4425 | es_ES |
dc.identifier.pmid | 32899475 | es_ES |
dc.identifier.pmcid | PMC7563664 | es_ES |
dc.relation.pasarela | S\418105 | es_ES |
dc.contributor.funder | Ministerio de Ciencia, Innovación y Universidades | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Lyttle, T. W. (1991). SEGREGATION DISTORTERS. Annual Review of Genetics, 25(1), 511-581. doi:10.1146/annurev.ge.25.120191.002455 | es_ES |
dc.description.references | Silver, L. M. (1993). The peculiar journey of a selfish chromosome: mouse t haplotypes and meiotic drive. Trends in Genetics, 9(7), 250-254. doi:10.1016/0168-9525(93)90090-5 | es_ES |
dc.description.references | Paz-Miguel, J. E., Pardo-Manuel de Villena, F., Sánchez-Velasco, P., & Leyva-Cobián, F. (2001). H2-haplotype-dependent unequal transmission of the 17 16 translocation chromosome from Ts65Dn females. Mammalian Genome, 12(1), 83-85. doi:10.1007/s003350010225 | es_ES |
dc.description.references | Meyer, W. K., Arbeithuber, B., Ober, C., Ebner, T., Tiemann-Boege, I., Hudson, R. R., & Przeworski, M. (2012). Evaluating the Evidence for Transmission Distortion in Human Pedigrees. Genetics, 191(1), 215-232. doi:10.1534/genetics.112.139576 | es_ES |
dc.description.references | Liu, Y., Zhang, L., Xu, S., Hu, L., Hurst, L. D., & Kong, X. (2013). Identification of Two Maternal Transmission Ratio Distortion Loci in Pedigrees of the Framingham Heart Study. Scientific Reports, 3(1). doi:10.1038/srep02147 | es_ES |
dc.description.references | Wu, G., Hao, L., Han, Z., Gao, S., Latham, K. E., de Villena, F. P.-M., & Sapienza, C. (2005). Maternal Transmission Ratio Distortion at the Mouse Om Locus Results From Meiotic Drive at the Second Meiotic Division. Genetics, 170(1), 327-334. doi:10.1534/genetics.104.039479 | es_ES |
dc.description.references | Solignac, M., Vautrin, D., Baudry, E., Mougel, F., Loiseau, A., & Cornuet, J.-M. (2004). A Microsatellite-Based Linkage Map of the Honeybee, Apis mellifera L. Genetics, 167(1), 253-262. doi:10.1534/genetics.167.1.253 | es_ES |
dc.description.references | Vongs, A., Kakutani, T., Martienssen, R. A., & Richards, E. J. (1993). Arabidopsis thaliana DNA Methylation Mutants. Science, 260(5116), 1926-1928. doi:10.1126/science.8316832 | es_ES |
dc.description.references | Koide, Y., Onishi, K., Nishimoto, D., Baruah, A. R., Kanazawa, A., & Sano, Y. (2008). Sex‐independent transmission ratio distortion system responsible for reproductive barriers between Asian and African rice species. New Phytologist, 179(3), 888-900. doi:10.1111/j.1469-8137.2008.02490.x | es_ES |
dc.description.references | WAKASUGI, N. (1974). A GENETICALLY DETERMINED INCOMPATIBILITY SYSTEM BETWEEN SPERMATOZOA AND EGGS LEADING TO EMBRYONIC DEATH IN MICE. Reproduction, 41(1), 85-96. doi:10.1530/jrf.0.0410085 | es_ES |
dc.description.references | Agulnik, S. I., Agulnik, A. I., & Ruvinsky, A. O. (1990). Meiotic drive in female mice heterozygous for the HSR inserts on chromosome 1. Genetical Research, 55(2), 97-100. doi:10.1017/s0016672300025325 | es_ES |
dc.description.references | Dyer, K. A., Charlesworth, B., & Jaenike, J. (2007). Chromosome-wide linkage disequilibrium as a consequence of meiotic drive. Proceedings of the National Academy of Sciences, 104(5), 1587-1592. doi:10.1073/pnas.0605578104 | es_ES |
dc.description.references | Fishman, L., & McIntosh, M. (2019). Standard Deviations: The Biological Bases of Transmission Ratio Distortion. Annual Review of Genetics, 53(1), 347-372. doi:10.1146/annurev-genet-112618-043905 | es_ES |
dc.description.references | Huang, L. O., Labbe, A., & Infante-Rivard, C. (2012). Transmission ratio distortion: review of concept and implications for genetic association studies. Human Genetics, 132(3), 245-263. doi:10.1007/s00439-012-1257-0 | es_ES |
dc.description.references | Lorieux, M., Goffinet, B., Perrier, X., de León, D. G., & Lanaud, C. (1995). Maximum-likelihood models for mapping genetic markers showing segregation distortion. 1. Backcross populations. Theoretical and Applied Genetics, 90(1), 73-80. doi:10.1007/bf00220998 | es_ES |
dc.description.references | Philipsen, M., & Kristensen, B. (2009). Preliminary evidence of segregation distortion in the SLA system. Animal Blood Groups and Biochemical Genetics, 16(2), 125-133. doi:10.1111/j.1365-2052.1985.tb01460.x | es_ES |
dc.description.references | Jeon, J.-T., Carlborg, Ö., Törnsten, A., Giuffra, E., Amarger, V., Chardon, P., … Andersson, L. (1999). A paternally expressed QTL affecting skeletal and cardiac muscle mass in pigs maps to the IGF2 locus. Nature Genetics, 21(2), 157-158. doi:10.1038/5938 | es_ES |
dc.description.references | Pinton, A., Calgaro, A., Bonnet, N., Ferchaud, S., Billoux, S., Dudez, A. M., … Ducos, A. (2009). Influence of sex on the meiotic segregation of a t(13;17) Robertsonian translocation: a case study in the pig. Human Reproduction, 24(8), 2034-2043. doi:10.1093/humrep/dep118 | es_ES |
dc.description.references | Casellas, J., Manunza, A., Mercader, A., Quintanilla, R., & Amills, M. (2014). A Flexible Bayesian Model for Testing for Transmission Ratio Distortion. Genetics, 198(4), 1357-1367. doi:10.1534/genetics.114.169607 | es_ES |
dc.description.references | Casellas, J., Gularte, R. J., Farber, C. R., Varona, L., Mehrabian, M., Schadt, E. E., … Medrano, J. F. (2012). Genome Scans for Transmission Ratio Distortion Regions in Mice. Genetics, 191(1), 247-259. doi:10.1534/genetics.111.135988 | es_ES |
dc.description.references | Shendure, J., Melo, J. A., Pociask, K., Derr, R., & Silver, L. M. (1998). Sex-restricted non-Mendelian inheritance of mouse Chromosome 11 in the offspring of crosses between C57BL/6J and (C57BL/6J × DBA/2J)F 1 mice. Mammalian Genome, 9(10), 812-815. doi:10.1007/s003359900872 | es_ES |
dc.description.references | Huang, L. O., Infante-Rivard, C., & Labbe, A. (2016). Analysis of Case-Parent Trios Using a Loglinear Model with Adjustment for Transmission Ratio Distortion. Frontiers in Genetics, 7. doi:10.3389/fgene.2016.00155 | es_ES |
dc.description.references | Lopez-Bote, C. (1998). Sustained Utilization of the Iberian Pig Breed. Meat Science, 49, S17-S27. doi:10.1016/s0309-1740(98)00072-2 | es_ES |
dc.description.references | Ibáñez-Escriche, N., Varona, L., Magallón, E., & Noguera, J. L. (2014). Crossbreeding effects on pig growth and carcass traits from two Iberian strains. Animal, 8(10), 1569-1576. doi:10.1017/s1751731114001712 | es_ES |
dc.description.references | Esteve-Codina, A., Kofler, R., Himmelbauer, H., Ferretti, L., Vivancos, A. P., Groenen, M. A. M., … Pérez-Enciso, M. (2011). Partial short-read sequencing of a highly inbred Iberian pig and genomics inference thereof. Heredity, 107(3), 256-264. doi:10.1038/hdy.2011.13 | es_ES |
dc.description.references | Vázquez-Gómez, M., García-Contreras, C., Astiz, S., Torres-Rovira, L., Fernández-Moya, E., Olivares, Á., … Isabel, B. (2020). Piglet birthweight and sex affect growth performance and fatty acid composition in fatty pigs. Animal Production Science, 60(4), 573. doi:10.1071/an18254 | es_ES |
dc.description.references | Laval, G., Iannuccelli, N., Legault, C., Milan, D., Groenen, M. A., Giuffra, E., … Ollivier, L. (2000). Genetic diversity of eleven European pig breeds. Genetics Selection Evolution, 32(2), 187. doi:10.1186/1297-9686-32-2-187 | es_ES |
dc.description.references | Fabuel, E., Barragán, C., Silió, L., Rodríguez, M. C., & Toro, M. A. (2004). Analysis of genetic diversity and conservation priorities in Iberian pigs based on microsatellite markers. Heredity, 93(1), 104-113. doi:10.1038/sj.hdy.6800488 | es_ES |
dc.description.references | Alonso, I., Ibáñez-Escriche, N., Noguera, J. L., Casellas, J., Martín de Hijas-Villalba, M., Gracia-Santana, M. J., & Varona, L. (2020). Genomic differentiation among varieties of Iberian pig. Spanish Journal of Agricultural Research, 18(1), e0401. doi:10.5424/sjar/2020181-15411 | es_ES |
dc.description.references | Ibáñez-Escriche, N., Magallón, E., Gonzalez, E., Tejeda, J. F., & Noguera, J. L. (2016). Genetic parameters and crossbreeding effects of fat deposition and fatty acid profiles in Iberian pig lines1. Journal of Animal Science, 94(1), 28-37. doi:10.2527/jas.2015-9433 | es_ES |
dc.description.references | Pena, R. N., Noguera, J. L., García-Santana, M. J., González, E., Tejeda, J. F., Ros-Freixedes, R., & Ibáñez-Escriche, N. (2019). Five genomic regions have a major impact on fat composition in Iberian pigs. Scientific Reports, 9(1). doi:10.1038/s41598-019-38622-7 | es_ES |
dc.description.references | Noguera, J. L., Ibáñez-Escriche, N., Casellas, J., Rosas, J. P., & Varona, L. (2019). Genetic parameters and direct, maternal and heterosis effects on litter size in a diallel cross among three commercial varieties of Iberian pig. Animal, 13(12), 2765-2772. doi:10.1017/s1751731119001125 | es_ES |
dc.description.references | Casellas, J., Ibáñez-Escriche, N., Varona, L., Rosas, J. P., & Noguera, J. L. (2019). Inbreeding depression load for litter size in Entrepelado and Retinto Iberian pig varieties1. Journal of Animal Science, 97(5), 1979-1986. doi:10.1093/jas/skz084 | es_ES |
dc.description.references | Weinberg, C. R., Wilcox, A. J., & Lie, R. T. (1998). A Log-Linear Approach to Case-Parent–Triad Data: Assessing Effects of Disease Genes That Act Either Directly or through Maternal Effects and That May Be Subject to Parental Imprinting. The American Journal of Human Genetics, 62(4), 969-978. doi:10.1086/301802 | es_ES |
dc.description.references | Benjamini, Y., & Hochberg, Y. (1995). Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society: Series B (Methodological), 57(1), 289-300. doi:10.1111/j.2517-6161.1995.tb02031.x | es_ES |
dc.description.references | Haider, S., Ballester, B., Smedley, D., Zhang, J., Rice, P., & Kasprzyk, A. (2009). BioMart Central Portal—unified access to biological data. Nucleic Acids Research, 37(suppl_2), W23-W27. doi:10.1093/nar/gkp265 | es_ES |
dc.description.references | Mi, H., Huang, X., Muruganujan, A., Tang, H., Mills, C., Kang, D., & Thomas, P. D. (2016). PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Research, 45(D1), D183-D189. doi:10.1093/nar/gkw1138 | es_ES |
dc.description.references | McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University (Baltimore, MD) https://omim.org/ | es_ES |
dc.description.references | Sydney School of Veterinary Science https://omia.org/ | es_ES |
dc.description.references | Kristensen, T. N., & Sørensen, A. C. (2005). Inbreeding – lessons from animal breeding, evolutionary biology and conservation genetics. Animal Science, 80(2), 121-133. doi:10.1079/asc41960121 | es_ES |
dc.description.references | Bosse, M., Megens, H.-J., Madsen, O., Paudel, Y., Frantz, L. A. F., Schook, L. B., … Groenen, M. A. M. (2012). Regions of Homozygosity in the Porcine Genome: Consequence of Demography and the Recombination Landscape. PLoS Genetics, 8(11), e1003100. doi:10.1371/journal.pgen.1003100 | es_ES |
dc.description.references | Silió, L., Rodríguez, M. C., Fernández, A., Barragán, C., Benítez, R., Óvilo, C., & Fernández, A. I. (2013). Measuring inbreeding and inbreeding depression on pig growth from pedigree or SNP-derived metrics. Journal of Animal Breeding and Genetics, 130(5), 349-360. doi:10.1111/jbg.12031 | es_ES |
dc.description.references | Eaves, I. A., Bennett, S. T., Forster, P., Ferber, K. M., Ehrmann, D., Wilson, A. J., … Todd, J. A. (1999). Transmission ratio distortion at the INS-IGF2 VNTR. Nature Genetics, 22(4), 324-325. doi:10.1038/11890 | es_ES |
dc.description.references | De Villena, F., & Sapienza, C. (2001). Transmission ratio distortion in offspring of heterozygous female carriers of Robertsonian translocations. Human Genetics, 108(1), 31-36. doi:10.1007/s004390000437 | es_ES |
dc.description.references | Saura, M., Fernández, A., Varona, L., Fernández, A. I., de Cara, M., Barragán, C., & Villanueva, B. (2015). Detecting inbreeding depression for reproductive traits in Iberian pigs using genome-wide data. Genetics Selection Evolution, 47(1), 1. doi:10.1186/s12711-014-0081-5 | es_ES |
dc.description.references | Hunt, S. E., McLaren, W., Gil, L., Thormann, A., Schuilenburg, H., Sheppard, D., … Cunningham, F. (2018). Ensembl variation resources. Database, 2018. doi:10.1093/database/bay119 | es_ES |
dc.description.references | Kido, T., Sikora-Wohlfeld, W., Kawashima, M., Kikuchi, S., Kamatani, N., Patwardhan, A., … Butte, A. J. (2018). Are minor alleles more likely to be risk alleles? BMC Medical Genomics, 11(1). doi:10.1186/s12920-018-0322-5 | es_ES |
dc.description.references | Balick, D. J., Do, R., Cassa, C. A., Reich, D., & Sunyaev, S. R. (2015). Dominance of Deleterious Alleles Controls the Response to a Population Bottleneck. PLOS Genetics, 11(8), e1005436. doi:10.1371/journal.pgen.1005436 | es_ES |
dc.description.references | Plough, L. V., & Hedgecock, D. (2011). Quantitative Trait Locus Analysis of Stage-Specific Inbreeding Depression in the Pacific Oyster Crassostrea gigas. Genetics, 189(4), 1473-1486. doi:10.1534/genetics.111.131854 | es_ES |
dc.description.references | Xu, S. (2008). Quantitative Trait Locus Mapping Can Benefit From Segregation Distortion. Genetics, 180(4), 2201-2208. doi:10.1534/genetics.108.090688 | es_ES |
dc.description.references | Id-Lahoucine, S., Cánovas, A., Jaton, C., Miglior, F., Fonseca, P. A. S., Sargolzaei, M., … Casellas, J. (2019). Implementation of Bayesian methods to identify SNP and haplotype regions with transmission ratio distortion across the whole genome: TRDscan v.1.0. Journal of Dairy Science, 102(4), 3175-3188. doi:10.3168/jds.2018-15296 | es_ES |
dc.description.references | Schulz, R., Underkoffler, L. A., Collins, J. N., & Oakey, R. J. (2006). Nondisjunction and transmission ratio distortion ofChromosome 2 in a (2.8) Robertsonian translocation mouse strain. Mammalian Genome, 17(3), 239-247. doi:10.1007/s00335-005-0126-8 | es_ES |
dc.description.references | Eversley, C. D., Clark, T., Xie, Y., Steigerwalt, J., Bell, T. A., de Villena, F. P., & Threadgill, D. W. (2010). Genetic mapping and developmental timing of transmission ratio distortion in a mouse interspecific backcross. BMC Genetics, 11(1). doi:10.1186/1471-2156-11-98 | es_ES |
dc.description.references | Rugg-Gunn, P. J., Cox, B. J., Ralston, A., & Rossant, J. (2010). Distinct histone modifications in stem cell lines and tissue lineages from the early mouse embryo. Proceedings of the National Academy of Sciences, 107(24), 10783-10790. doi:10.1073/pnas.0914507107 | es_ES |
dc.description.references | Canovas, S., & Ross, P. J. (2016). Epigenetics in preimplantation mammalian development. Theriogenology, 86(1), 69-79. doi:10.1016/j.theriogenology.2016.04.020 | es_ES |
dc.description.references | Jambhekar, A., Dhall, A., & Shi, Y. (2019). Roles and regulation of histone methylation in animal development. Nature Reviews Molecular Cell Biology, 20(10), 625-641. doi:10.1038/s41580-019-0151-1 | es_ES |
dc.description.references | Gonzalez-Bulnes, A., Astiz, S., Ovilo, C., Lopez-Bote, C. J., Torres-Rovira, L., Barbero, A., … Vazquez-Gomez, M. (2016). Developmental Origins of Health and Disease in swine: implications for animal production and biomedical research. Theriogenology, 86(1), 110-119. doi:10.1016/j.theriogenology.2016.03.024 | es_ES |
dc.description.references | Ishibashi, Y., Kohyama-Koganeya, A., & Hirabayashi, Y. (2013). New insights on glucosylated lipids: Metabolism and functions. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1831(9), 1475-1485. doi:10.1016/j.bbalip.2013.06.001 | es_ES |