- -

Computational Study of Urea-Water Solution Sprays for the Analysis of the Injection Process in SCR-like Conditions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Computational Study of Urea-Water Solution Sprays for the Analysis of the Injection Process in SCR-like Conditions

Mostrar el registro completo del ítem

Payri, R.; Bracho Leon, G.; Marti-Aldaravi, P.; Marco-Gimeno, J. (2020). Computational Study of Urea-Water Solution Sprays for the Analysis of the Injection Process in SCR-like Conditions. Industrial & Engineering Chemistry Research. 59(41):18659-18673. https://doi.org/10.1021/acs.iecr.0c02494

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/168952

Ficheros en el ítem

Metadatos del ítem

Título: Computational Study of Urea-Water Solution Sprays for the Analysis of the Injection Process in SCR-like Conditions
Autor: Payri, Raul Bracho Leon, Gabriela Marti-Aldaravi, Pedro Marco-Gimeno, Javier
Entidad UPV: Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Fecha difusión:
Resumen:
[EN] Exhaust after-treatment devices for NOx reduction have become mandatory for achieving the strict diesel emission standards. The selective catalytic reduction (SCR) method has proven to be efficient in this task. ...[+]
Derechos de uso: Reserva de todos los derechos
Fuente:
Industrial & Engineering Chemistry Research. (issn: 0888-5885 )
DOI: 10.1021/acs.iecr.0c02494
Editorial:
American Chemical Society
Versión del editor: https://doi.org/10.1021/acs.iecr.0c02494
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2018%2F037/ES/DIAGNÓSTICO ÓPTICO A ALTA VELOCIDAD PARA EL ESTUDIO DE PROCESOS TERMO‐FLUIDODINÁMICOS EN SISTEMAS DE INYECCIÓN/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-099706-B-I00/ES/ESTUDIO DE LA ATOMIZACION PRIMARIA MEDIANTE SIMULACIONES DNS Y TECNICAS OPTICAS DE MUY ALTA RESOLUCION/
Descripción: This document is the Accepted Manuscript version of a Published Work that appeared in final form in Industrial & Engineering Chemistry Research, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acs.iecr.0c02494.
Agradecimientos:
This research has been partially funded by Spanish Ministerio de Ciencia, Innovacion y Universidades through project RTI2018-099706-B-100. Additionally, the experimental hardware was purchased through FEDER and Generalitat ...[+]
Tipo: Artículo

References

Han, L., Cai, S., Gao, M., Hasegawa, J., Wang, P., Zhang, J., … Zhang, D. (2019). Selective Catalytic Reduction of NOx with NH3 by Using Novel Catalysts: State of the Art and Future Prospects. Chemical Reviews, 119(19), 10916-10976. doi:10.1021/acs.chemrev.9b00202

Reitz, R. D., Ogawa, H., Payri, R., Fansler, T., Kokjohn, S., Moriyoshi, Y., … Zhao, H. (2019). IJER editorial: The future of the internal combustion engine. International Journal of Engine Research, 21(1), 3-10. doi:10.1177/1468087419877990

Dammalapati, S., Aghalayam, P., & Kaisare, N. (2019). Modeling the Effect of Nonuniformities from Urea Injection on SCR Performance Using CFD. Industrial & Engineering Chemistry Research, 58(44), 20247-20258. doi:10.1021/acs.iecr.9b04149 [+]
Han, L., Cai, S., Gao, M., Hasegawa, J., Wang, P., Zhang, J., … Zhang, D. (2019). Selective Catalytic Reduction of NOx with NH3 by Using Novel Catalysts: State of the Art and Future Prospects. Chemical Reviews, 119(19), 10916-10976. doi:10.1021/acs.chemrev.9b00202

Reitz, R. D., Ogawa, H., Payri, R., Fansler, T., Kokjohn, S., Moriyoshi, Y., … Zhao, H. (2019). IJER editorial: The future of the internal combustion engine. International Journal of Engine Research, 21(1), 3-10. doi:10.1177/1468087419877990

Dammalapati, S., Aghalayam, P., & Kaisare, N. (2019). Modeling the Effect of Nonuniformities from Urea Injection on SCR Performance Using CFD. Industrial & Engineering Chemistry Research, 58(44), 20247-20258. doi:10.1021/acs.iecr.9b04149

Triantafyllopoulos, G., Katsaounis, D., Karamitros, D., Ntziachristos, L., & Samaras, Z. (2018). Experimental assessment of the potential to decrease diesel NOx emissions beyond minimum requirements for Euro 6 Real Drive Emissions (RDE) compliance. Science of The Total Environment, 618, 1400-1407. doi:10.1016/j.scitotenv.2017.09.274

Inomata, Y., Hata, S., Mino, M., Kiyonaga, E., Morita, K., Hikino, K., … Murayama, T. (2019). Bulk Vanadium Oxide versus Conventional V2O5/TiO2: NH3–SCR Catalysts Working at a Low Temperature Below 150 °C. ACS Catalysis, 9(10), 9327-9331. doi:10.1021/acscatal.9b02695

Xue, Z., Du, X., Rac, V., Rakic, V., Wang, X., Chen, Y., … Song, L. (2020). Partial Oxidation of NO by H2O2 and afterward Reduction by NH3-Selective Catalytic Reduction: An Efficient Method for NO Removal. Industrial & Engineering Chemistry Research, 59(20), 9393-9397. doi:10.1021/acs.iecr.9b06896

Nuguid, R. J. G., Ferri, D., Marberger, A., Nachtegaal, M., & Kröcher, O. (2019). Modulated Excitation Raman Spectroscopy of V2O5/TiO2: Mechanistic Insights into the Selective Catalytic Reduction of NO with NH3. ACS Catalysis, 9(8), 6814-6820. doi:10.1021/acscatal.9b01514

Yim, S. D., Kim, S. J., Baik, J. H., Nam, I., Mok, Y. S., Lee, J.-H., … Oh, S. H. (2004). Decomposition of Urea into NH3 for the SCR Process. Industrial & Engineering Chemistry Research, 43(16), 4856-4863. doi:10.1021/ie034052j

Zheng, G.; Fila, A.; Kotrba, A.; Floyd, R. Investigation of urea deposits in urea SCR systems for medium and heavy duty trucks. SAE Technical Papers, 2010, 2010-01-19.

Strots, V. O., Santhanam, S., Adelman, B. J., Griffin, G. A., & Derybowski, E. M. (2009). Deposit Formation in Urea-SCR Systems. SAE International Journal of Fuels and Lubricants, 2(2), 283-289. doi:10.4271/2009-01-2780

Abu-Ramadan, E.; Saha, K.; Li, X. Modeling of the injection and decomposition processes of urea-water-solution spray in automotive SCR systems. SAE 2011 World Congress and Exhibition, 2011, 2011-01-13.

Sowman, J., Laila, D. S., Fussey, P., Truscott, A., & Cruden, A. J. (2019). Nonlinear model predictive control applied to multivariable thermal and chemical control of selective catalytic reduction aftertreatment. International Journal of Engine Research, 20(10), 1017-1024. doi:10.1177/1468087419859103

Varna, A., Boulouchos, K., Spiteri, A., Dimopoulos Eggenschwiler, P., & Wright, Y. M. (2014). Numerical Modelling and Experimental Characterization of a Pressure-Assisted Multi-Stream Injector for SCR Exhaust Gas After-Treatment. SAE International Journal of Engines, 7(4), 2012-2021. doi:10.4271/2014-01-2822

Varna, A., Spiteri, A. C., Wright, Y. M., Dimopoulos Eggenschwiler, P., & Boulouchos, K. (2015). Experimental and numerical assessment of impingement and mixing of urea–water sprays for nitric oxide reduction in diesel exhaust. Applied Energy, 157, 824-837. doi:10.1016/j.apenergy.2015.03.015

Van Vuuren, N.; Brizi, G.; Buitoni, G.; Postrioti, L.; Ungaro, C. Experimental analysis of the urea-water solution temperature effect on the spray characteristics in SCR systems. SAE Technical Papers, 2015, 2015-24-25.

van Vuuren, N.; Brizi, G.; Buitoni, G.; Postrioti, L.; Ungaro, C. AUS-32 Injector Spray Imaging on Hot Air Flow Bench. SAE Technical Papers, 2015, 2015-01-10.

Kapusta, Ł. J., Sutkowski, M., Rogóż, R., Zommara, M., & Teodorczyk, A. (2019). Characteristics of Water and Urea–Water Solution Sprays. Catalysts, 9(9), 750. doi:10.3390/catal9090750

Rogóż, R., Kapusta, Ł. J., Bachanek, J., Vankan, J., & Teodorczyk, A. (2020). Improved urea-water solution spray model for simulations of selective catalytic reduction systems. Renewable and Sustainable Energy Reviews, 120, 109616. doi:10.1016/j.rser.2019.109616

Bebe, J. E.; Andersen, K. S. Validation of a CFD Spray Model Based on Spray Nozzle Characteristics. WCX 17: SAE World Congress Experience, 2017.

Vojtíšek, M., & Kotek, M. (2014). Estimation of Engine Intake Air Mass Flow using a generic Speed-Density method. Journal of Middle European Construction and Design of Cars, 12(1), 7-15. doi:10.2478/mecdc-2014-0002

Payri, R., Bracho, G., Gimeno, J., & Moreno, A. (2019). Investigation of the urea-water solution atomization process in engine exhaust-like conditions. Experimental Thermal and Fluid Science, 108, 75-84. doi:10.1016/j.expthermflusci.2019.05.019

Payri, R.; Bracho, G.; Gimeno, J.; Moreno, A. Spray characterization of the urea-water solution (UWS) injected in a hot air stream analogous to SCR system operating conditions. SAE Technical Papers, 2019, 2019-01-07.

Sechenyh, V., Duke, D. J., Swantek, A. B., Matusik, K. E., Kastengren, A. L., Powell, C. F., … Crua, C. (2019). Quantitative analysis of dribble volumes and rates using three-dimensional reconstruction of X-ray and diffused back-illumination images of diesel sprays. International Journal of Engine Research, 21(1), 43-54. doi:10.1177/1468087419860955

BASF. AdBlueTechnical Leaflet. 2006, https://www.gabriels.be/sites/gabriels/files/pdf/technische_fiche_adblue-_engels.pdf (accessed October 8, 2019).

Senecal, P. K.; Pomraning, E.; Richards, K. J.; Som, S. Grid-Convergent Spray Models for Internal Combustion Engine CFD Simulations. Internal Combustion Engine Division Fall Technical Conference; American Society of Mechanical Engineers, 2012.

Patterson, M. A.; Reitz, R. D. Modeling the Effects of Fuel Spray Characteristics on Diesel Engine Combustion and Emission. SAE Technical Paper; JSTOR, 1998.

Schmidt, D. P., & Rutland, C. J. (2000). A New Droplet Collision Algorithm. Journal of Computational Physics, 164(1), 62-80. doi:10.1006/jcph.2000.6568

Chiang, C. H., Raju, M. S., & Sirignano, W. A. (1992). Numerical analysis of convecting, vaporizing fuel droplet with variable properties. International Journal of Heat and Mass Transfer, 35(5), 1307-1324. doi:10.1016/0017-9310(92)90186-v

Payri, R., Gimeno, J., Martí-Aldaraví, P., & Viera, A. (2020). Measurements of the mass allocation for multiple injection strategies using the rate of injection and momentum flux signals. International Journal of Engine Research, 22(4), 1180-1195. doi:10.1177/1468087419894854

Payri, R.; Salvador, F. J.; Gimeno, J.; Montiel, T. Aging of a Multi-Hole Diesel Injector and Its Effect on the Rate of Injection. SAE Technical Paper, 2020; pp 1–9

Benjamin, S. F.; Roberts, C. A. Fuel Systems for IC Engines; IMechE; Woodhead Publishing: Cambridge, UK, 2012; pp 43–60.

Gapin, A.; Demoulin, F.; Dumouchel, C.; Pajot, K.; Patte-Rouland, B.; Réveillon, J. Development of an Initial Drop-Size Distribution Model and Introduction in a CFD Code to Predict Spray Evolution Computational Techniques for Multiphase Flows. 7th International Conference on Multiphase Flow; ICMF; University of Florida: Tampa, FL USA, 2010.

Lefebvre, A. H.; McDonell, V. G. Combustion: An International Series, 2nd ed. Press, CRC: Boca Raton, FL, 2017; pp 17–69.

Senthilkumar, P.; Shamit, B.; Anand, T. Breakup Length of Urea Water Solution Jet in a Hot Cross Flow. 28th Conference on Liquid Atomization and Spray Systems - ILASS; Universitat Politècnica de València: Valencia, Spain, 2017.

Halonen, S., Kangas, T., Haataja, M., & Lassi, U. (2016). Urea-Water-Solution Properties: Density, Viscosity, and Surface Tension in an Under-Saturated Solution. Emission Control Science and Technology, 3(2), 161-170. doi:10.1007/s40825-016-0051-1

Heywood, J. B. Internal Combustion Engine Fundamentals, 2nd ed. McGraw-Hill: New York, NY, 2018; pp 42–57.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem