- -

Computational Study of Urea-Water Solution Sprays for the Analysis of the Injection Process in SCR-like Conditions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Computational Study of Urea-Water Solution Sprays for the Analysis of the Injection Process in SCR-like Conditions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Payri, Raul es_ES
dc.contributor.author Bracho Leon, Gabriela es_ES
dc.contributor.author Marti-Aldaravi, Pedro es_ES
dc.contributor.author Marco-Gimeno, Javier es_ES
dc.date.accessioned 2021-07-08T03:31:47Z
dc.date.available 2021-07-08T03:31:47Z
dc.date.issued 2020-10-14 es_ES
dc.identifier.issn 0888-5885 es_ES
dc.identifier.uri http://hdl.handle.net/10251/168952
dc.description This document is the Accepted Manuscript version of a Published Work that appeared in final form in Industrial & Engineering Chemistry Research, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acs.iecr.0c02494. es_ES
dc.description.abstract [EN] Exhaust after-treatment devices for NOx reduction have become mandatory for achieving the strict diesel emission standards. The selective catalytic reduction (SCR) method has proven to be efficient in this task. Nonetheless, in order to improve the efficiency of the system, the urea-water solution (UWS) injection process needs to be properly characterized due to the limited geometry of the exhaust line and its flow conditions. In combination with the experimental analysis into the system in a dedicated test rig, computational fluid dynamics studies provide better insights into the physical phenomena. Therefore, the main objective of this investigation is to achieve validated droplet size and velocity distributions in the simulation when compared to experiments. Three different positions along the spray are evaluated for that. The methodology adopted includes an Eulerian-Lagrangian approach to study the UWS spray. The results obtained with it show a proper experimental validation as well as the Sauter mean diameter distribution for the conditions tested. The proposed model accurately reproduces the main spray characteristics for different injection pressures and ambient conditions. Thus, the main conclusions obtained sum up in a good methodology for predicting UWS sprays in SCR-like conditions. es_ES
dc.description.sponsorship This research has been partially funded by Spanish Ministerio de Ciencia, Innovacion y Universidades through project RTI2018-099706-B-100. Additionally, the experimental hardware was purchased through FEDER and Generalitat Valenciana under project IDIFEDER/2018/037. es_ES
dc.language Inglés es_ES
dc.publisher American Chemical Society es_ES
dc.relation.ispartof Industrial & Engineering Chemistry Research es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification INGENIERIA AEROESPACIAL es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Computational Study of Urea-Water Solution Sprays for the Analysis of the Injection Process in SCR-like Conditions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1021/acs.iecr.0c02494 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2018%2F037/ES/DIAGNÓSTICO ÓPTICO A ALTA VELOCIDAD PARA EL ESTUDIO DE PROCESOS TERMO‐FLUIDODINÁMICOS EN SISTEMAS DE INYECCIÓN/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-099706-B-I00/ES/ESTUDIO DE LA ATOMIZACION PRIMARIA MEDIANTE SIMULACIONES DNS Y TECNICAS OPTICAS DE MUY ALTA RESOLUCION/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Payri, R.; Bracho Leon, G.; Marti-Aldaravi, P.; Marco-Gimeno, J. (2020). Computational Study of Urea-Water Solution Sprays for the Analysis of the Injection Process in SCR-like Conditions. Industrial & Engineering Chemistry Research. 59(41):18659-18673. https://doi.org/10.1021/acs.iecr.0c02494 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1021/acs.iecr.0c02494 es_ES
dc.description.upvformatpinicio 18659 es_ES
dc.description.upvformatpfin 18673 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 59 es_ES
dc.description.issue 41 es_ES
dc.relation.pasarela S\423728 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.description.references Han, L., Cai, S., Gao, M., Hasegawa, J., Wang, P., Zhang, J., … Zhang, D. (2019). Selective Catalytic Reduction of NOx with NH3 by Using Novel Catalysts: State of the Art and Future Prospects. Chemical Reviews, 119(19), 10916-10976. doi:10.1021/acs.chemrev.9b00202 es_ES
dc.description.references Reitz, R. D., Ogawa, H., Payri, R., Fansler, T., Kokjohn, S., Moriyoshi, Y., … Zhao, H. (2019). IJER editorial: The future of the internal combustion engine. International Journal of Engine Research, 21(1), 3-10. doi:10.1177/1468087419877990 es_ES
dc.description.references Dammalapati, S., Aghalayam, P., & Kaisare, N. (2019). Modeling the Effect of Nonuniformities from Urea Injection on SCR Performance Using CFD. Industrial & Engineering Chemistry Research, 58(44), 20247-20258. doi:10.1021/acs.iecr.9b04149 es_ES
dc.description.references Triantafyllopoulos, G., Katsaounis, D., Karamitros, D., Ntziachristos, L., & Samaras, Z. (2018). Experimental assessment of the potential to decrease diesel NOx emissions beyond minimum requirements for Euro 6 Real Drive Emissions (RDE) compliance. Science of The Total Environment, 618, 1400-1407. doi:10.1016/j.scitotenv.2017.09.274 es_ES
dc.description.references Inomata, Y., Hata, S., Mino, M., Kiyonaga, E., Morita, K., Hikino, K., … Murayama, T. (2019). Bulk Vanadium Oxide versus Conventional V2O5/TiO2: NH3–SCR Catalysts Working at a Low Temperature Below 150 °C. ACS Catalysis, 9(10), 9327-9331. doi:10.1021/acscatal.9b02695 es_ES
dc.description.references Xue, Z., Du, X., Rac, V., Rakic, V., Wang, X., Chen, Y., … Song, L. (2020). Partial Oxidation of NO by H2O2 and afterward Reduction by NH3-Selective Catalytic Reduction: An Efficient Method for NO Removal. Industrial & Engineering Chemistry Research, 59(20), 9393-9397. doi:10.1021/acs.iecr.9b06896 es_ES
dc.description.references Nuguid, R. J. G., Ferri, D., Marberger, A., Nachtegaal, M., & Kröcher, O. (2019). Modulated Excitation Raman Spectroscopy of V2O5/TiO2: Mechanistic Insights into the Selective Catalytic Reduction of NO with NH3. ACS Catalysis, 9(8), 6814-6820. doi:10.1021/acscatal.9b01514 es_ES
dc.description.references Yim, S. D., Kim, S. J., Baik, J. H., Nam, I., Mok, Y. S., Lee, J.-H., … Oh, S. H. (2004). Decomposition of Urea into NH3 for the SCR Process. Industrial & Engineering Chemistry Research, 43(16), 4856-4863. doi:10.1021/ie034052j es_ES
dc.description.references Zheng, G.; Fila, A.; Kotrba, A.; Floyd, R. Investigation of urea deposits in urea SCR systems for medium and heavy duty trucks. SAE Technical Papers, 2010, 2010-01-19. es_ES
dc.description.references Strots, V. O., Santhanam, S., Adelman, B. J., Griffin, G. A., & Derybowski, E. M. (2009). Deposit Formation in Urea-SCR Systems. SAE International Journal of Fuels and Lubricants, 2(2), 283-289. doi:10.4271/2009-01-2780 es_ES
dc.description.references Abu-Ramadan, E.; Saha, K.; Li, X. Modeling of the injection and decomposition processes of urea-water-solution spray in automotive SCR systems. SAE 2011 World Congress and Exhibition, 2011, 2011-01-13. es_ES
dc.description.references Sowman, J., Laila, D. S., Fussey, P., Truscott, A., & Cruden, A. J. (2019). Nonlinear model predictive control applied to multivariable thermal and chemical control of selective catalytic reduction aftertreatment. International Journal of Engine Research, 20(10), 1017-1024. doi:10.1177/1468087419859103 es_ES
dc.description.references Varna, A., Boulouchos, K., Spiteri, A., Dimopoulos Eggenschwiler, P., & Wright, Y. M. (2014). Numerical Modelling and Experimental Characterization of a Pressure-Assisted Multi-Stream Injector for SCR Exhaust Gas After-Treatment. SAE International Journal of Engines, 7(4), 2012-2021. doi:10.4271/2014-01-2822 es_ES
dc.description.references Varna, A., Spiteri, A. C., Wright, Y. M., Dimopoulos Eggenschwiler, P., & Boulouchos, K. (2015). Experimental and numerical assessment of impingement and mixing of urea–water sprays for nitric oxide reduction in diesel exhaust. Applied Energy, 157, 824-837. doi:10.1016/j.apenergy.2015.03.015 es_ES
dc.description.references Van Vuuren, N.; Brizi, G.; Buitoni, G.; Postrioti, L.; Ungaro, C. Experimental analysis of the urea-water solution temperature effect on the spray characteristics in SCR systems. SAE Technical Papers, 2015, 2015-24-25. es_ES
dc.description.references van Vuuren, N.; Brizi, G.; Buitoni, G.; Postrioti, L.; Ungaro, C. AUS-32 Injector Spray Imaging on Hot Air Flow Bench. SAE Technical Papers, 2015, 2015-01-10. es_ES
dc.description.references Kapusta, Ł. J., Sutkowski, M., Rogóż, R., Zommara, M., & Teodorczyk, A. (2019). Characteristics of Water and Urea–Water Solution Sprays. Catalysts, 9(9), 750. doi:10.3390/catal9090750 es_ES
dc.description.references Rogóż, R., Kapusta, Ł. J., Bachanek, J., Vankan, J., & Teodorczyk, A. (2020). Improved urea-water solution spray model for simulations of selective catalytic reduction systems. Renewable and Sustainable Energy Reviews, 120, 109616. doi:10.1016/j.rser.2019.109616 es_ES
dc.description.references Bebe, J. E.; Andersen, K. S. Validation of a CFD Spray Model Based on Spray Nozzle Characteristics. WCX 17: SAE World Congress Experience, 2017. es_ES
dc.description.references Vojtíšek, M., & Kotek, M. (2014). Estimation of Engine Intake Air Mass Flow using a generic Speed-Density method. Journal of Middle European Construction and Design of Cars, 12(1), 7-15. doi:10.2478/mecdc-2014-0002 es_ES
dc.description.references Payri, R., Bracho, G., Gimeno, J., & Moreno, A. (2019). Investigation of the urea-water solution atomization process in engine exhaust-like conditions. Experimental Thermal and Fluid Science, 108, 75-84. doi:10.1016/j.expthermflusci.2019.05.019 es_ES
dc.description.references Payri, R.; Bracho, G.; Gimeno, J.; Moreno, A. Spray characterization of the urea-water solution (UWS) injected in a hot air stream analogous to SCR system operating conditions. SAE Technical Papers, 2019, 2019-01-07. es_ES
dc.description.references Sechenyh, V., Duke, D. J., Swantek, A. B., Matusik, K. E., Kastengren, A. L., Powell, C. F., … Crua, C. (2019). Quantitative analysis of dribble volumes and rates using three-dimensional reconstruction of X-ray and diffused back-illumination images of diesel sprays. International Journal of Engine Research, 21(1), 43-54. doi:10.1177/1468087419860955 es_ES
dc.description.references BASF. AdBlueTechnical Leaflet. 2006, https://www.gabriels.be/sites/gabriels/files/pdf/technische_fiche_adblue-_engels.pdf (accessed October 8, 2019). es_ES
dc.description.references Senecal, P. K.; Pomraning, E.; Richards, K. J.; Som, S. Grid-Convergent Spray Models for Internal Combustion Engine CFD Simulations. Internal Combustion Engine Division Fall Technical Conference; American Society of Mechanical Engineers, 2012. es_ES
dc.description.references Patterson, M. A.; Reitz, R. D. Modeling the Effects of Fuel Spray Characteristics on Diesel Engine Combustion and Emission. SAE Technical Paper; JSTOR, 1998. es_ES
dc.description.references Schmidt, D. P., & Rutland, C. J. (2000). A New Droplet Collision Algorithm. Journal of Computational Physics, 164(1), 62-80. doi:10.1006/jcph.2000.6568 es_ES
dc.description.references Chiang, C. H., Raju, M. S., & Sirignano, W. A. (1992). Numerical analysis of convecting, vaporizing fuel droplet with variable properties. International Journal of Heat and Mass Transfer, 35(5), 1307-1324. doi:10.1016/0017-9310(92)90186-v es_ES
dc.description.references Payri, R., Gimeno, J., Martí-Aldaraví, P., & Viera, A. (2020). Measurements of the mass allocation for multiple injection strategies using the rate of injection and momentum flux signals. International Journal of Engine Research, 22(4), 1180-1195. doi:10.1177/1468087419894854 es_ES
dc.description.references Payri, R.; Salvador, F. J.; Gimeno, J.; Montiel, T. Aging of a Multi-Hole Diesel Injector and Its Effect on the Rate of Injection. SAE Technical Paper, 2020; pp 1–9 es_ES
dc.description.references Benjamin, S. F.; Roberts, C. A. Fuel Systems for IC Engines; IMechE; Woodhead Publishing: Cambridge, UK, 2012; pp 43–60. es_ES
dc.description.references Gapin, A.; Demoulin, F.; Dumouchel, C.; Pajot, K.; Patte-Rouland, B.; Réveillon, J. Development of an Initial Drop-Size Distribution Model and Introduction in a CFD Code to Predict Spray Evolution Computational Techniques for Multiphase Flows. 7th International Conference on Multiphase Flow; ICMF; University of Florida: Tampa, FL USA, 2010. es_ES
dc.description.references Lefebvre, A. H.; McDonell, V. G. Combustion: An International Series, 2nd ed. Press, CRC: Boca Raton, FL, 2017; pp 17–69. es_ES
dc.description.references Senthilkumar, P.; Shamit, B.; Anand, T. Breakup Length of Urea Water Solution Jet in a Hot Cross Flow. 28th Conference on Liquid Atomization and Spray Systems - ILASS; Universitat Politècnica de València: Valencia, Spain, 2017. es_ES
dc.description.references Halonen, S., Kangas, T., Haataja, M., & Lassi, U. (2016). Urea-Water-Solution Properties: Density, Viscosity, and Surface Tension in an Under-Saturated Solution. Emission Control Science and Technology, 3(2), 161-170. doi:10.1007/s40825-016-0051-1 es_ES
dc.description.references Heywood, J. B. Internal Combustion Engine Fundamentals, 2nd ed. McGraw-Hill: New York, NY, 2018; pp 42–57. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem