Mostrar el registro sencillo del ítem
dc.contributor.author | Guardiola, Carlos | es_ES |
dc.contributor.author | Pla Moreno, Benjamín | es_ES |
dc.contributor.author | Bares-Moreno, Pau | es_ES |
dc.contributor.author | Barbier, Alvin Richard Sebastien | es_ES |
dc.date.accessioned | 2021-07-13T03:30:59Z | |
dc.date.available | 2021-07-13T03:30:59Z | |
dc.date.issued | 2020-03 | es_ES |
dc.identifier.issn | 1468-0874 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/169144 | |
dc.description | This is the author¿s version of a work that was accepted for publication in International Journal of Engine Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published as https://doi.org/10.1177/1468087419835327. | es_ES |
dc.description.abstract | [EN] This work presents a closed-loop combustion control concept using in-cylinder pressure as a feedback in a dual-fuel combustion engine. At low load, reactivity controlled compression ignition combustion was used while a diffusive dual-fuel combustion was performed at higher loads. The aim of the presented controller is to maintain the indicated mean effective pressure and the combustion phasing at a target value, and to keep the maximum pressure derivative under a limit to avoid engine damage in all the combustion modes by cyclically adapting the injection settings. Various tests were performed at steady-state conditions showing good abilities to fulfil the expected operating conditions but also to reject disturbances such as intake pressure or exhaust gas recirculation variations. Finally, the proposed control strategy was tested during a load transient resulting in a combustion switching-mode and the results exhibited the closed-loop potential for controlling such combustion concept. | es_ES |
dc.description.sponsorship | The author(s) disclosed receipt of the following finan-cial support for the research, authorship, and/or publi-cation of this article: The authors acknowledge the support of Spanish Ministerio de Economia, Industria y Competitividad through project TRA2016-78717-R. Alvin Barbier received a funding through the grant ACIF/2018/141 from the Generalitat Valenciana and the European Social Fund. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | SAGE Publications | es_ES |
dc.relation.ispartof | International Journal of Engine Research | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Reactivity controlled compression ignition | es_ES |
dc.subject | Dual-fuel combustion | es_ES |
dc.subject | Combustion control | es_ES |
dc.subject | In-cylinder pressure feedback | es_ES |
dc.subject | Closed-loop control | es_ES |
dc.subject.classification | INGENIERIA AEROESPACIAL | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Closed-loop control of a dual-fuel engine working with different combustion modes using in-cylinder pressure feedback | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1177/1468087419835327 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TRA2016-78717-R/ES/ESTRATEGIAS DE CONTROL BASADAS EN LA INFORMACION CONTEXTUAL DEL VEHICULO PARA LA REDUCCION DEL CONSUMO DE COMBUSTIBLE Y LAS EMISIONES EN CONDICIONES REALES DE CONDUCCION/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//ACIF%2F2018%2F141/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics | es_ES |
dc.description.bibliographicCitation | Guardiola, C.; Pla Moreno, B.; Bares-Moreno, P.; Barbier, ARS. (2020). Closed-loop control of a dual-fuel engine working with different combustion modes using in-cylinder pressure feedback. International Journal of Engine Research. 21(3):484-496. https://doi.org/10.1177/1468087419835327 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1177/1468087419835327 | es_ES |
dc.description.upvformatpinicio | 484 | es_ES |
dc.description.upvformatpfin | 496 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 21 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.pasarela | S\409097 | es_ES |
dc.contributor.funder | European Social Fund | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Kusaka, J., Sueoka, M., Takada, K., Ohga, Y., Nagasaki, T., & Daisho, Y. (2005). A basic study on a urea-selective catalytic reduction system for a medium-duty diesel engine. International Journal of Engine Research, 6(1), 11-19. doi:10.1243/146808705x7310 | es_ES |
dc.description.references | Hull, A., Golubkov, I., Kronberg, B., & van Stam, J. (2006). Alternative Fuel for a Standard Diesel Engine. International Journal of Engine Research, 7(1), 51-63. doi:10.1243/146808705x30549 | es_ES |
dc.description.references | Sung, K., Kim, J., & Reitz, R. D. (2009). Experimental study of pollutant emission reduction for near-stoichiometric diesel combustion in a three-way catalyst. International Journal of Engine Research, 10(5), 349-357. doi:10.1243/14680874jer04109 | es_ES |
dc.description.references | Johnson, T. V. (2009). Review of diesel emissions and control. International Journal of Engine Research, 10(5), 275-285. doi:10.1243/14680874jer04009 | es_ES |
dc.description.references | Yun, H., & Reitz, R. D. (2005). Combustion optimization in the low-temperature diesel combustion regime. International Journal of Engine Research, 6(5), 513-524. doi:10.1243/146808705x30576 | es_ES |
dc.description.references | Kook, S., Bae, C., & Kim, J. (2007). Diesel-fuelled homogeneous charge compression ignition engine with optimized premixing strategies. International Journal of Engine Research, 8(1), 127-137. doi:10.1243/14680874jer02506 | es_ES |
dc.description.references | Ogawa, H., Azuma, K., & Miyamoto, N. (2007). Combustion control and operating range expansion in an homogeneous charge compression ignition engine with suppression of low-temperature oxidation by methanol: Influence of compression ratio and octane number of main fuel. International Journal of Engine Research, 8(1), 139-145. doi:10.1243/14680874jer01606 | es_ES |
dc.description.references | Yao, M., Zheng, Z., & Liu, H. (2009). Progress and recent trends in homogeneous charge compression ignition (HCCI) engines. Progress in Energy and Combustion Science, 35(5), 398-437. doi:10.1016/j.pecs.2009.05.001 | es_ES |
dc.description.references | Reitz, R. D. (2013). Directions in internal combustion engine research. Combustion and Flame, 160(1), 1-8. doi:10.1016/j.combustflame.2012.11.002 | es_ES |
dc.description.references | Imtenan, S., Varman, M., Masjuki, H. H., Kalam, M. A., Sajjad, H., Arbab, M. I., & Rizwanul Fattah, I. M. (2014). Impact of low temperature combustion attaining strategies on diesel engine emissions for diesel and biodiesels: A review. Energy Conversion and Management, 80, 329-356. doi:10.1016/j.enconman.2014.01.020 | es_ES |
dc.description.references | Paykani, A., Kakaee, A.-H., Rahnama, P., & Reitz, R. D. (2015). Progress and recent trends in reactivity-controlled compression ignition engines. International Journal of Engine Research, 17(5), 481-524. doi:10.1177/1468087415593013 | es_ES |
dc.description.references | Hanson, R. M., Kokjohn, S. L., Splitter, D. A., & Reitz, R. D. (2010). An Experimental Investigation of Fuel Reactivity Controlled PCCI Combustion in a Heavy-Duty Engine. SAE International Journal of Engines, 3(1), 700-716. doi:10.4271/2010-01-0864 | es_ES |
dc.description.references | Kokjohn, S. L., Hanson, R. M., Splitter, D. A., & Reitz, R. D. (2011). Fuel reactivity controlled compression ignition (RCCI): a pathway to controlled high-efficiency clean combustion. International Journal of Engine Research, 12(3), 209-226. doi:10.1177/1468087411401548 | es_ES |
dc.description.references | Molina, S., García, A., Pastor, J. M., Belarte, E., & Balloul, I. (2015). Operating range extension of RCCI combustion concept from low to full load in a heavy-duty engine. Applied Energy, 143, 211-227. doi:10.1016/j.apenergy.2015.01.035 | es_ES |
dc.description.references | Reitz, R. D., & Duraisamy, G. (2015). Review of high efficiency and clean reactivity controlled compression ignition (RCCI) combustion in internal combustion engines. Progress in Energy and Combustion Science, 46, 12-71. doi:10.1016/j.pecs.2014.05.003 | es_ES |
dc.description.references | Benajes, J., Molina, S., García, A., & Monsalve-Serrano, J. (2015). Effects of direct injection timing and blending ratio on RCCI combustion with different low reactivity fuels. Energy Conversion and Management, 99, 193-209. doi:10.1016/j.enconman.2015.04.046 | es_ES |
dc.description.references | Benajes, J., Pastor, J. V., García, A., & Boronat, V. (2016). A RCCI operational limits assessment in a medium duty compression ignition engine using an adapted compression ratio. Energy Conversion and Management, 126, 497-508. doi:10.1016/j.enconman.2016.08.023 | es_ES |
dc.description.references | Benajes, J., García, A., Monsalve-Serrano, J., & Boronat, V. (2017). Achieving clean and efficient engine operation up to full load by combining optimized RCCI and dual-fuel diesel-gasoline combustion strategies. Energy Conversion and Management, 136, 142-151. doi:10.1016/j.enconman.2017.01.010 | es_ES |
dc.description.references | Shaver, G. M., Roelle, M. J., Caton, P. A., Kaahaaina, N. B., Ravi, N., Hathout, J.-P., … Gerdes, J. C. (2005). A physics-based approach to the control of homogeneous charge compression ignition engines with variable valve actuation. International Journal of Engine Research, 6(4), 361-375. doi:10.1243/146808705x30512 | es_ES |
dc.description.references | Caton, P. A., Song, H. H., Kaahaaina, N. B., & Edwards, C. F. (2005). Residual-effected homogeneous charge compression ignition with delayed intake-valve closing at elevated compression ratio. International Journal of Engine Research, 6(4), 399-419. doi:10.1243/146808705x30431 | es_ES |
dc.description.references | Dempsey, A. B., Walker, N. R., Gingrich, E., & Reitz, R. D. (2014). Comparison of Low Temperature Combustion Strategies for Advanced Compression Ignition Engines with a Focus on Controllability. Combustion Science and Technology, 186(2), 210-241. doi:10.1080/00102202.2013.858137 | es_ES |
dc.description.references | Ritter, D., Andert, J., Abel, D., & Albin, T. (2017). Model-based control of gasoline-controlled auto-ignition. International Journal of Engine Research, 19(2), 189-201. doi:10.1177/1468087417717399 | es_ES |
dc.description.references | Carlucci, A. P., Laforgia, D., Motz, S., Saracino, R., & Wenzel, S. P. (2014). Advanced closed loop combustion control of a LTC diesel engine based on in-cylinder pressure signals. Energy Conversion and Management, 77, 193-207. doi:10.1016/j.enconman.2013.08.054 | es_ES |
dc.description.references | Ott, T., Zurbriggen, F., Onder, C., & Guzzella, L. (2013). Cylinder Individual Feedback Control of Combustion in a Dual Fuel Engine. IFAC Proceedings Volumes, 46(21), 600-605. doi:10.3182/20130904-4-jp-2042.00080 | es_ES |
dc.description.references | Hanson, R., & Reitz, R. D. (2013). Transient RCCI Operation in a Light-Duty Multi-Cylinder Engine. SAE International Journal of Engines, 6(3), 1694-1705. doi:10.4271/2013-24-0050 | es_ES |
dc.description.references | Indrajuana, A., Bekdemir, C., Luo, X., & Willems, F. (2016). Robust Multivariable Feedback Control of Natural Gas-Diesel RCCI Combustion. IFAC-PapersOnLine, 49(11), 217-222. doi:10.1016/j.ifacol.2016.08.033 | es_ES |
dc.description.references | Luján, J. M., Galindo, J., Serrano, J. R., & Pla, B. (2008). A methodology to identify the intake charge cylinder-to-cylinder distribution in turbocharged direct injection Diesel engines. Measurement Science and Technology, 19(6), 065401. doi:10.1088/0957-0233/19/6/065401 | es_ES |
dc.description.references | Payri, F., Broatch, A., Salavert, J. M., & Martín, J. (2010). Investigation of Diesel combustion using multiple injection strategies for idling after cold start of passenger-car engines. Experimental Thermal and Fluid Science, 34(7), 857-865. doi:10.1016/j.expthermflusci.2010.01.014 | es_ES |
dc.description.references | Kokjohn, S. L., Hanson, R. M., Splitter, D. A., & Reitz, R. D. (2009). Experiments and Modeling of Dual-Fuel HCCI and PCCI Combustion Using In-Cylinder Fuel Blending. SAE International Journal of Engines, 2(2), 24-39. doi:10.4271/2009-01-2647 | es_ES |
dc.description.references | Desantes, J. M., Benajes, J., García, A., & Monsalve-Serrano, J. (2014). The role of the in-cylinder gas temperature and oxygen concentration over low load reactivity controlled compression ignition combustion efficiency. Energy, 78, 854-868. doi:10.1016/j.energy.2014.10.080 | es_ES |