PAYRI, R., GARCIA, J., SALVADOR, F., & GIMENO, J. (2005). Using spray momentum flux measurements to understand the influence of diesel nozzle geometry on spray characteristics. Fuel, 84(5), 551-561. doi:10.1016/j.fuel.2004.10.009
Payri, R., Salvador, F. J., Gimeno, J., & Zapata, L. D. (2008). Diesel nozzle geometry influence on spray liquid-phase fuel penetration in evaporative conditions. Fuel, 87(7), 1165-1176. doi:10.1016/j.fuel.2007.05.058
Payri, R., Salvador, F. J., Gimeno, J., & de la Morena, J. (2009). Effects of nozzle geometry on direct injection diesel engine combustion process. Applied Thermal Engineering, 29(10), 2051-2060. doi:10.1016/j.applthermaleng.2008.10.009
[+]
PAYRI, R., GARCIA, J., SALVADOR, F., & GIMENO, J. (2005). Using spray momentum flux measurements to understand the influence of diesel nozzle geometry on spray characteristics. Fuel, 84(5), 551-561. doi:10.1016/j.fuel.2004.10.009
Payri, R., Salvador, F. J., Gimeno, J., & Zapata, L. D. (2008). Diesel nozzle geometry influence on spray liquid-phase fuel penetration in evaporative conditions. Fuel, 87(7), 1165-1176. doi:10.1016/j.fuel.2007.05.058
Payri, R., Salvador, F. J., Gimeno, J., & de la Morena, J. (2009). Effects of nozzle geometry on direct injection diesel engine combustion process. Applied Thermal Engineering, 29(10), 2051-2060. doi:10.1016/j.applthermaleng.2008.10.009
Payri, F., Payri, R., Salvador, F. J., & Martínez-López, J. (2012). A contribution to the understanding of cavitation effects in Diesel injector nozzles through a combined experimental and computational investigation. Computers & Fluids, 58, 88-101. doi:10.1016/j.compfluid.2012.01.005
Kastengren, A. L., Powell, C. F., Wang, Y., Im, K.-S., & Wang, J. (2009). X-RAY RADIOGRAPHY MEASUREMENTS OF DIESEL SPRAY STRUCTURE AT ENGINE-LIKE AMBIENT DENSITY. Atomization and Sprays, 19(11), 1031-1044. doi:10.1615/atomizspr.v19.i11.30
Pickett, L. M., Manin, J., Kastengren, A., & Powell, C. (2014). Comparison of Near-Field Structure and Growth of a Diesel Spray Using Light-Based Optical Microscopy and X-Ray Radiography. SAE International Journal of Engines, 7(2), 1044-1053. doi:10.4271/2014-01-1412
Dahms, R. N., Manin, J., Pickett, L. M., & Oefelein, J. C. (2013). Understanding high-pressure gas-liquid interface phenomena in Diesel engines. Proceedings of the Combustion Institute, 34(1), 1667-1675. doi:10.1016/j.proci.2012.06.169
Arienti, M., & Sussman, M. (2017). A numerical study of the thermal transient in high-pressure diesel injection. International Journal of Multiphase Flow, 88, 205-221. doi:10.1016/j.ijmultiphaseflow.2016.09.017
Vallet, A., Burluka, A. A., & Borghi, R. (2001). DEVELOPMENT OF A EULERIAN MODEL FOR THE «ATOMIZATION» OF A LIQUID JET. Atomization and Sprays, 11(6), 24. doi:10.1615/atomizspr.v11.i6.20
Siebers, D. L. (2008). Recent Developments on Diesel Fuel Jets Under Quiescent Conditions. Flow and Combustion in Reciprocating Engines, 257-308. doi:10.1007/978-3-540-68901-0_5
Oefelein, J., Dahms, R., & Lacaze, G. (2012). Detailed Modeling and Simulation of High-Pressure Fuel Injection Processes in Diesel Engines. SAE International Journal of Engines, 5(3), 1410-1419. doi:10.4271/2012-01-1258
Demoulin, F.-X., Reveillon, J., Duret, B., Bouali, Z., Desjonqueres, P., & Menard, T. (2013). TOWARD USING DIRECT NUMERICAL SIMULATION TO IMPROVE PRIMARY BREAK-UP MODELING. Atomization and Sprays, 23(11), 957-980. doi:10.1615/atomizspr.2013007439
Desantes, J. M., Garcia-Oliver, J. M., Pastor, J. M., & Pandal, A. (2016). A COMPARISON OF DIESEL SPRAYS CFD MODELING APPROACHES: DDM VERSUS E-Y EULERIAN ATOMIZATION MODEL. Atomization and Sprays, 26(7), 713-737. doi:10.1615/atomizspr.2015013285
Desantes, J. M., García-Oliver, J. M., Pastor, J. M., Pandal, A., Baldwin, E., & Schmidt, D. P. (2016). Coupled/decoupled spray simulation comparison of the ECN spray a condition with the -Y Eulerian atomization model. International Journal of Multiphase Flow, 80, 89-99. doi:10.1016/j.ijmultiphaseflow.2015.12.002
Garcia-Oliver, J. M., Pastor, J. M., Pandal, A., Trask, N., Baldwin, E., & Schmidt, D. P. (2013). DIESEL SPRAY CFD SIMULATIONS BASED ON THE Σ-Υ EULERIAN ATOMIZATION MODEL. Atomization and Sprays, 23(1), 71-95. doi:10.1615/atomizspr.2013007198
Navarro-Martinez, S. (2014). Large eddy simulation of spray atomization with a probability density function method. International Journal of Multiphase Flow, 63, 11-22. doi:10.1016/j.ijmultiphaseflow.2014.02.013
Pandal, A., Pastor, J. M., García-Oliver, J. M., Baldwin, E., & Schmidt, D. P. (2016). A consistent, scalable model for Eulerian spray modeling. International Journal of Multiphase Flow, 83, 162-171. doi:10.1016/j.ijmultiphaseflow.2016.04.003
Pandal, A., Payri, R., García-Oliver, J. M., & Pastor, J. M. (2017). Optimization of spray break-up CFD simulations by combining Σ-Y Eulerian atomization model with a response surface methodology under diesel engine-like conditions (ECN Spray A). Computers & Fluids, 156, 9-20. doi:10.1016/j.compfluid.2017.06.022
Pandal, A., García-Oliver, J. M., Novella, R., & Pastor, J. M. (2018). A computational analysis of local flow for reacting Diesel sprays by means of an Eulerian CFD model. International Journal of Multiphase Flow, 99, 257-272. doi:10.1016/j.ijmultiphaseflow.2017.10.010
Payri, R., Ruiz, S., Gimeno, J., & Martí-Aldaraví, P. (2015). Verification of a new CFD compressible segregated and multi-phase solver with different flux updates-equations sequences. Applied Mathematical Modelling, 39(2), 851-861. doi:10.1016/j.apm.2014.07.011
Salvador, F. J., Gimeno, J., Pastor, J. M., & Martí-Aldaraví, P. (2014). Effect of turbulence model and inlet boundary condition on the Diesel spray behavior simulated by an Eulerian Spray Atomization (ESA) model. International Journal of Multiphase Flow, 65, 108-116. doi:10.1016/j.ijmultiphaseflow.2014.06.003
Demoulin, F.-X., Beau, P.-A., Blokkeel, G., Mura, A., & Borghi, R. (2007). A NEW MODEL FOR TURBULENT FLOWS WITH LARGE DENSITY FLUCTUATIONS: APPLICATION TO LIQUID ATOMIZATION. Atomization and Sprays, 17(4), 315-345. doi:10.1615/atomizspr.v17.i4.20
Pandal, A., Pastor, J. M., Payri, R., Kastengren, A., Duke, D., Matusik, K., … Schmidt, D. (2017). Computational and Experimental Investigation of Interfacial Area in Near-Field Diesel Spray Simulation. SAE International Journal of Fuels and Lubricants, 10(2), 423-431. doi:10.4271/2017-01-0859
Weller, H. G., Tabor, G., Jasak, H., & Fureby, C. (1998). A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in Physics, 12(6), 620. doi:10.1063/1.168744
Faeth, G. M. (1983). Evaporation and combustion of sprays. Progress in Energy and Combustion Science, 9(1-2), 1-76. doi:10.1016/0360-1285(83)90005-9
Pitzer, K. S., Lippmann, D. Z., Curl, R. F., Huggins, C. M., & Petersen, D. E. (1955). The Volumetric and Thermodynamic Properties of Fluids. II. Compressibility Factor, Vapor Pressure and Entropy of Vaporization1. Journal of the American Chemical Society, 77(13), 3433-3440. doi:10.1021/ja01618a002
Lebas, R., Menard, T., Beau, P. A., Berlemont, A., & Demoulin, F. X. (2009). Numerical simulation of primary break-up and atomization: DNS and modelling study. International Journal of Multiphase Flow, 35(3), 247-260. doi:10.1016/j.ijmultiphaseflow.2008.11.005
Duret, B., Reveillon, J., Menard, T., & Demoulin, F. X. (2013). Improving primary atomization modeling through DNS of two-phase flows. International Journal of Multiphase Flow, 55, 130-137. doi:10.1016/j.ijmultiphaseflow.2013.05.004
Gimeno, J., Bracho, G., Martí-Aldaraví, P., & Peraza, J. E. (2016). Experimental study of the injection conditions influence over n-dodecane and diesel sprays with two ECN single-hole nozzles. Part I: Inert atmosphere. Energy Conversion and Management, 126, 1146-1156. doi:10.1016/j.enconman.2016.07.077
Kastengren, A., Ilavsky, J., Viera, J. P., Payri, R., Duke, D. J., Swantek, A., … Powell, C. F. (2017). Measurements of droplet size in shear-driven atomization using ultra-small angle x-ray scattering. International Journal of Multiphase Flow, 92, 131-139. doi:10.1016/j.ijmultiphaseflow.2017.03.005
Kastengren, A. L., Tilocco, F. Z., Powell, C. F., Manin, J., Pickett, L. M., Payri, R., & Bazyn, T. (2012). ENGINE COMBUSTION NETWORK (ECN): MEASUREMENTS OF NOZZLE GEOMETRY AND HYDRAULIC BEHAVIOR. Atomization and Sprays, 22(12), 1011-1052. doi:10.1615/atomizspr.2013006309
Matusik, K. E., Duke, D. J., Kastengren, A. L., Sovis, N., Swantek, A. B., & Powell, C. F. (2017). High-resolution X-ray tomography of Engine Combustion Network diesel injectors. International Journal of Engine Research, 19(9), 963-976. doi:10.1177/1468087417736985
Payri, R., Gimeno, J., Cuisano, J., & Arco, J. (2016). Hydraulic characterization of diesel engine single-hole injectors. Fuel, 180, 357-366. doi:10.1016/j.fuel.2016.03.083
Naber, J., & Siebers, D. L. (1996). Effects of Gas Density and Vaporization on Penetration and Dispersion of Diesel Sprays. SAE Technical Paper Series. doi:10.4271/960034
Pope, S. B. (1978). An explanation of the turbulent round-jet/plane-jet anomaly. AIAA Journal, 16(3), 279-281. doi:10.2514/3.7521
Battistoni, M., Magnotti, G. M., Genzale, C. L., Arienti, M., Matusik, K. E., Duke, D. J., … Marti-Aldaravi, P. (2018). Experimental and Computational Investigation of Subcritical Near-Nozzle Spray Structure and Primary Atomization in the Engine Combustion Network Spray D. SAE International Journal of Fuels and Lubricants, 11(4), 337-352. doi:10.4271/2018-01-0277
Chesnel, J., Reveillon, J., Menard, T., & Demoulin, F.-X. (2011). LARGE EDDY SIMULATION OF LIQUID JET ATOMIZATION. Atomization and Sprays, 21(9), 711-736. doi:10.1615/atomizspr.2012003740
Devassy, B. M., Habchi, C., & Daniel, E. (2015). ATOMIZATION MODELLING OF LIQUID JETS USING A TWO-SURFACE-DENSITY APPROACH. Atomization and Sprays, 25(1), 47-80. doi:10.1615/atomizspr.2014011350
García-Oliver, J. M., Malbec, L.-M., Toda, H. B., & Bruneaux, G. (2017). A study on the interaction between local flow and flame structure for mixing-controlled Diesel sprays. Combustion and Flame, 179, 157-171. doi:10.1016/j.combustflame.2017.01.023
Han, D., & Mungal, M. . (2001). Direct measurement of entrainment in reacting/nonreacting turbulent jets. Combustion and Flame, 124(3), 370-386. doi:10.1016/s0010-2180(00)00211-x
Hill, B. J. (1972). Measurement of local entrainment rate in the initial region of axisymmetric turbulent air jets. Journal of Fluid Mechanics, 51(4), 773-779. doi:10.1017/s0022112072001351
Post, S., Iyer, V., & Abraham, J. (1999). A Study of Near-Field Entrainment in Gas Jets and Sprays Under Diesel Conditions. Journal of Fluids Engineering, 122(2), 385-395. doi:10.1115/1.483268
[-]