- -

Assessment on the consequences of injection strategies on combustion process and particle size distributions in Euro VI medium-duty diesel engine

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Assessment on the consequences of injection strategies on combustion process and particle size distributions in Euro VI medium-duty diesel engine

Show simple item record

Files in this item

dc.contributor.author Bermúdez, Vicente es_ES
dc.contributor.author García Martínez, Antonio es_ES
dc.contributor.author Villalta-Lara, David es_ES
dc.contributor.author Soto, Lian es_ES
dc.date.accessioned 2021-07-13T03:31:10Z
dc.date.available 2021-07-13T03:31:10Z
dc.date.issued 2020-04 es_ES
dc.identifier.issn 1468-0874 es_ES
dc.identifier.uri http://hdl.handle.net/10251/169151
dc.description This is the author's version of a work that was accepted for publication in International Journal of Engine Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published as https://doi.org/10.1177/1468087419865652. es_ES
dc.description.abstract [EN] Although there are already several works where the influence of injection parameters on exhaust emissions, and specifically on particulate matter emissions, in diesel engines has been evaluated, the diversity in the results that can be found in the literature indicates the need to carry out new experiments that can provide more information about the influence of these parameters on modern diesel engines. This study intends to be placed within this scientific framework, hence a parametric study was carried out based on the independent modification of the main injection timing and the injection pressure with respect to the nominal conditions of a new Euro VI direct injection diesel engine. Four steady-state operation points of the engine map were chosen: 25% load and 950 r/min, 50% load and 1500 r/min, 75% load and 2000 r/min and 100% load and 2200 r/min, where in each of these operation points, the variations of the injection parameters in the study on the combustion process and its consequent impact on the particle size distribution, including an analysis of the geometric mean diameter values, were evaluated. The results showed that the different injection strategies adopted, despite not significantly affecting the engine efficiency, did cause a significant impact on particle number emissions. At the low load operation, the size distribution showed a bimodal structure, and as the main injection timing was delayed and the injection pressure was decreased, the nucleation-mode particle concentration decreased, while the accumulation-mode particle concentration increased. In addition, at medium load, the nucleation-mode particle emission decreased considerably while the accumulation-mode particle emission increased, and this increase was much greater with the main injection timing delay and the injection pressure reduction. Similar behavior was observed at high load, but with a much more prominent pattern. es_ES
dc.description.sponsorship The author(s) disclosed receipt of the following financial support for the research, authorship and/or publication of this article: This investigation has been funded by VOLVO Group Trucks Technology. The authors also acknowledge the Spanish economy and competitiveness ministry for partially supporting this research (HiReCo TRA2014-58870-R). es_ES
dc.language Inglés es_ES
dc.publisher SAGE Publications es_ES
dc.relation.ispartof International Journal of Engine Research es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Modern diesel engine es_ES
dc.subject Particle size distribution es_ES
dc.subject Particle number emissions es_ES
dc.subject Injection strategies es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Assessment on the consequences of injection strategies on combustion process and particle size distributions in Euro VI medium-duty diesel engine es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1177/1468087419865652 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TRA2014-58870-R/ES/REDUCCION DE LAS EMISIONES DE CO2 EN VEHICULOS PARA TRANSPORTE USANDO COMBUSTION DUAL NATURAL GAS-DIESEL/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Bermúdez, V.; García Martínez, A.; Villalta-Lara, D.; Soto, L. (2020). Assessment on the consequences of injection strategies on combustion process and particle size distributions in Euro VI medium-duty diesel engine. International Journal of Engine Research. 21(4):683-697. https://doi.org/10.1177/1468087419865652 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1177/1468087419865652 es_ES
dc.description.upvformatpinicio 683 es_ES
dc.description.upvformatpfin 697 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.description.issue 4 es_ES
dc.relation.pasarela S\393084 es_ES
dc.contributor.funder Volvo Group Trucks Technology es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Kemball-Cook, S., Yarwood, G., Johnson, J., Dornblaser, B., & Estes, M. (2015). Evaluating NOx emission inventories for regulatory air quality modeling using satellite and air quality model data. Atmospheric Environment, 117, 1-8. doi:10.1016/j.atmosenv.2015.07.002 es_ES
dc.description.references Paulin, L., & Hansel, N. (2016). Particulate air pollution and impaired lung function. F1000Research, 5, 201. doi:10.12688/f1000research.7108.1 es_ES
dc.description.references Hime, N., Marks, G., & Cowie, C. (2018). A Comparison of the Health Effects of Ambient Particulate Matter Air Pollution from Five Emission Sources. International Journal of Environmental Research and Public Health, 15(6), 1206. doi:10.3390/ijerph15061206 es_ES
dc.description.references Johnson, T., & Joshi, A. (2018). Review of Vehicle Engine Efficiency and Emissions. SAE International Journal of Engines, 11(6), 1307-1330. doi:10.4271/2018-01-0329 es_ES
dc.description.references Wu, Z., Rutland, C. J., & Han, Z. (2017). Numerical optimization of natural gas and diesel dual-fuel combustion for a heavy-duty engine operated at a medium load. International Journal of Engine Research, 19(6), 682-696. doi:10.1177/1468087417729255 es_ES
dc.description.references Lapuerta, M., Hernández, J. J., Rodríguez-Fernández, J., Barba, J., Ramos, A., & Fernández-Rodríguez, D. (2017). Emission benefits from the use of n-butanol blends in a Euro 6 diesel engine. International Journal of Engine Research, 19(10), 1099-1112. doi:10.1177/1468087417742578 es_ES
dc.description.references Chilumukuru, K., Gupta, A., Ruth, M., Cunningham, M., Kothandaraman, G., Cumaranatunge, L., & Hess, H. (2017). Aftertreatment Architecture and Control Methodologies for Future Light Duty Diesel Emission Regulations. SAE International Journal of Engines, 10(4), 1580-1587. doi:10.4271/2017-01-0911 es_ES
dc.description.references Bermúdez, V., Luján, J. M., Piqueras, P., & Campos, D. (2014). Pollutants emission and particle behavior in a pre-turbo aftertreatment light-duty diesel engine. Energy, 66, 509-522. doi:10.1016/j.energy.2014.02.004 es_ES
dc.description.references Lapuerta, M., Ramos, Á., Fernández-Rodríguez, D., & González-García, I. (2018). High-pressure versus low-pressure exhaust gas recirculation in a Euro 6 diesel engine with lean-NOx trap: Effectiveness to reduce NOx emissions. International Journal of Engine Research, 20(1), 155-163. doi:10.1177/1468087418817447 es_ES
dc.description.references Rakopoulos, C. D., Rakopoulos, D. C., Mavropoulos, G. C., & Kosmadakis, G. M. (2018). Investigating the EGR rate and temperature impact on diesel engine combustion and emissions under various injection timings and loads by comprehensive two-zone modeling. Energy, 157, 990-1014. doi:10.1016/j.energy.2018.05.178 es_ES
dc.description.references Du, W., Lou, J., Yan, Y., Bao, W., & Liu, F. (2017). Effects of injection pressure on diesel sprays in constant injection mass condition. Applied Thermal Engineering, 121, 234-241. doi:10.1016/j.applthermaleng.2017.04.075 es_ES
dc.description.references Nishida, K., Zhu, J., Leng, X., & He, Z. (2017). Effects of micro-hole nozzle and ultra-high injection pressure on air entrainment, liquid penetration, flame lift-off and soot formation of diesel spray flame. International Journal of Engine Research, 18(1-2), 51-65. doi:10.1177/1468087416688805 es_ES
dc.description.references Yamasaki, Y., Ikemura, R., & Kaneko, S. (2017). Model-based control of diesel engines with multiple fuel injections. International Journal of Engine Research, 19(2), 257-265. doi:10.1177/1468087417747738 es_ES
dc.description.references Giechaskiel, B., Schiefer, E., Schindler, W., Axmann, H., & Dardiotis, C. (2013). Overview of Soot Emission Measurements Instrumentation: From Smoke and Filter Mass to Particle Number. SAE International Journal of Engines, 6(1), 10-22. doi:10.4271/2013-01-0138 es_ES
dc.description.references Dickau, M., Olfert, J., Stettler, M. E. J., Boies, A., Momenimovahed, A., Thomson, K., … Johnson, M. (2016). Methodology for quantifying the volatile mixing state of an aerosol. Aerosol Science and Technology, 50(8), 759-772. doi:10.1080/02786826.2016.1185509 es_ES
dc.description.references Lähde, T., Rönkkö, T., Virtanen, A., Schuck, T. J., Pirjola, L., Hämeri, K., … Keskinen, J. (2008). Heavy Duty Diesel Engine Exhaust Aerosol Particle and Ion Measurements. Environmental Science & Technology, 43(1), 163-168. doi:10.1021/es801690h es_ES
dc.description.references Saxena, M. R., & Maurya, R. K. (2017). Effect of premixing ratio, injection timing and compression ratio on nano particle emissions from dual fuel non-road compression ignition engine fueled with gasoline/methanol (port injection) and diesel (direct injection). Fuel, 203, 894-914. doi:10.1016/j.fuel.2017.05.015 es_ES
dc.description.references Gao, J., & Kuo, T.-W. (2018). Toward the accurate prediction of soot in engine applications. International Journal of Engine Research, 20(7), 706-717. doi:10.1177/1468087418773937 es_ES
dc.description.references Zhang, Y., Ghandhi, J., & Rothamer, D. (2017). Comparisons of particle size distribution from conventional and advanced compression ignition combustion strategies. International Journal of Engine Research, 19(7), 699-717. doi:10.1177/1468087417721089 es_ES
dc.description.references Lapuerta, M., Armas, O., & Gómez, A. (2003). Diesel Particle Size Distribution Estimation from Digital Image Analysis. Aerosol Science and Technology, 37(4), 369-381. doi:10.1080/02786820300970 es_ES
dc.description.references Agarwal, A. K., Gupta, T., & Kothari, A. (2011). Particulate emissions from biodiesel vs diesel fuelled compression ignition engine. Renewable and Sustainable Energy Reviews, 15(6), 3278-3300. doi:10.1016/j.rser.2011.04.002 es_ES
dc.description.references Bai, J., & Qiao, X. (2015). Crankcase gaseous and particle emissions in common rail diesel engine. International Journal of Engine Research, 17(2), 179-192. doi:10.1177/1468087414563585 es_ES
dc.description.references Reijnders, J., Boot, M., & de Goey, P. (2018). Particle nucleation-accumulation mode trade-off: A second diesel dilemma? Journal of Aerosol Science, 124, 95-111. doi:10.1016/j.jaerosci.2018.06.013 es_ES
dc.description.references Bonatesta, F., Chiappetta, E., & La Rocca, A. (2014). Part-load particulate matter from a GDI engine and the connection with combustion characteristics. Applied Energy, 124, 366-376. doi:10.1016/j.apenergy.2014.03.030 es_ES
dc.description.references Desantes, J. M., Bermúdez, V., García, A., & Linares, W. G. (2011). A Comprehensive Study of Particle Size Distributions with the Use of PostInjection Strategies in DI Diesel Engines. Aerosol Science and Technology, 45(10), 1161-1175. doi:10.1080/02786826.2011.582898 es_ES
dc.description.references Li, X., Guan, C., Luo, Y., & Huang, Z. (2015). Effect of multiple-injection strategies on diesel engine exhaust particle size and nanostructure. Journal of Aerosol Science, 89, 69-76. doi:10.1016/j.jaerosci.2015.07.008 es_ES
dc.description.references Benajes, J., García, A., Monsalve-Serrano, J., Balloul, I., & Pradel, G. (2017). Evaluating the reactivity controlled compression ignition operating range limits in a high-compression ratio medium-duty diesel engine fueled with biodiesel and ethanol. International Journal of Engine Research, 18(1-2), 66-80. doi:10.1177/1468087416678500 es_ES
dc.description.references Kakaee, A.-H., Nasiri-Toosi, A., Partovi, B., & Paykani, A. (2016). Effects of piston bowl geometry on combustion and emissions characteristics of a natural gas/diesel RCCI engine. Applied Thermal Engineering, 102, 1462-1472. doi:10.1016/j.applthermaleng.2016.03.162 es_ES
dc.description.references Desantes, J. M., Bermúdez, V., Pastor, J. V., & Fuentes, E. (2004). Methodology for measuring exhaust aerosol size distributions from heavy duty diesel engines by means of a scanning mobility particle sizer. Measurement Science and Technology, 15(10), 2083-2098. doi:10.1088/0957-0233/15/10/019 es_ES
dc.description.references Desantes, J. M., Bermúdez, V., Molina, S., & Linares, W. G. (2011). Methodology for measuring exhaust aerosol size distributions using an engine test under transient operating conditions. Measurement Science and Technology, 22(11), 115101. doi:10.1088/0957-0233/22/11/115101 es_ES
dc.description.references Payri, F., Olmeda, P., Martín, J., & García, A. (2011). A complete 0D thermodynamic predictive model for direct injection diesel engines. Applied Energy, 88(12), 4632-4641. doi:10.1016/j.apenergy.2011.06.005 es_ES
dc.description.references Benajes, J. V., López, J. J., Novella, R., & García, A. (2008). ADVANCED METHODOLOGY FOR IMPROVING TESTING EFFICIENCY IN A SINGLE-CYLINDER RESEARCH DIESEL ENGINE. Experimental Techniques, 32(6), 41-47. doi:10.1111/j.1747-1567.2007.00296.x es_ES
dc.description.references Liu, Q., Fu, J., Zhu, G., Li, Q., Liu, J., Duan, X., & Guo, Q. (2018). Comparative study on thermodynamics, combustion and emissions of turbocharged gasoline direct injection (GDI) engine under NEDC and steady-state conditions. Energy Conversion and Management, 169, 111-123. doi:10.1016/j.enconman.2018.05.047 es_ES
dc.description.references Seong, H. J., & Boehman, A. L. (2012). Studies of soot oxidative reactivity using a diffusion flame burner. Combustion and Flame, 159(5), 1864-1875. doi:10.1016/j.combustflame.2012.01.009 es_ES
dc.description.references Desantes, J. M., Bermúdez, V., García, J. M., & Fuentes, E. (2005). Effects of current engine strategies on the exhaust aerosol particle size distribution from a Heavy-Duty Diesel Engine. Journal of Aerosol Science, 36(10), 1251-1276. doi:10.1016/j.jaerosci.2005.01.002 es_ES
dc.description.references Lucachick, G., Curran, S., Storey, J., Prikhodko, V., & Northrop, W. F. (2016). Volatility characterization of nanoparticles from single and dual-fuel low temperature combustion in compression ignition engines. Aerosol Science and Technology, 50(5), 436-447. doi:10.1080/02786826.2016.1163320 es_ES
dc.description.references Mohankumar, S., & Senthilkumar, P. (2017). Particulate matter formation and its control methodologies for diesel engine: A comprehensive review. Renewable and Sustainable Energy Reviews, 80, 1227-1238. doi:10.1016/j.rser.2017.05.133 es_ES
dc.description.references Burtscher, H. (2005). Physical characterization of particulate emissions from diesel engines: a review. Journal of Aerosol Science, 36(7), 896-932. doi:10.1016/j.jaerosci.2004.12.001 es_ES


This item appears in the following Collection(s)

Show simple item record