Mostrar el registro sencillo del ítem
dc.contributor.author | Bermúdez, Vicente | es_ES |
dc.contributor.author | García Martínez, Antonio | es_ES |
dc.contributor.author | Villalta-Lara, David | es_ES |
dc.contributor.author | Soto, Lian | es_ES |
dc.date.accessioned | 2021-07-13T03:31:10Z | |
dc.date.available | 2021-07-13T03:31:10Z | |
dc.date.issued | 2020-04 | es_ES |
dc.identifier.issn | 1468-0874 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/169151 | |
dc.description | This is the author's version of a work that was accepted for publication in International Journal of Engine Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published as https://doi.org/10.1177/1468087419865652. | es_ES |
dc.description.abstract | [EN] Although there are already several works where the influence of injection parameters on exhaust emissions, and specifically on particulate matter emissions, in diesel engines has been evaluated, the diversity in the results that can be found in the literature indicates the need to carry out new experiments that can provide more information about the influence of these parameters on modern diesel engines. This study intends to be placed within this scientific framework, hence a parametric study was carried out based on the independent modification of the main injection timing and the injection pressure with respect to the nominal conditions of a new Euro VI direct injection diesel engine. Four steady-state operation points of the engine map were chosen: 25% load and 950 r/min, 50% load and 1500 r/min, 75% load and 2000 r/min and 100% load and 2200 r/min, where in each of these operation points, the variations of the injection parameters in the study on the combustion process and its consequent impact on the particle size distribution, including an analysis of the geometric mean diameter values, were evaluated. The results showed that the different injection strategies adopted, despite not significantly affecting the engine efficiency, did cause a significant impact on particle number emissions. At the low load operation, the size distribution showed a bimodal structure, and as the main injection timing was delayed and the injection pressure was decreased, the nucleation-mode particle concentration decreased, while the accumulation-mode particle concentration increased. In addition, at medium load, the nucleation-mode particle emission decreased considerably while the accumulation-mode particle emission increased, and this increase was much greater with the main injection timing delay and the injection pressure reduction. Similar behavior was observed at high load, but with a much more prominent pattern. | es_ES |
dc.description.sponsorship | The author(s) disclosed receipt of the following financial support for the research, authorship and/or publication of this article: This investigation has been funded by VOLVO Group Trucks Technology. The authors also acknowledge the Spanish economy and competitiveness ministry for partially supporting this research (HiReCo TRA2014-58870-R). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | SAGE Publications | es_ES |
dc.relation.ispartof | International Journal of Engine Research | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Modern diesel engine | es_ES |
dc.subject | Particle size distribution | es_ES |
dc.subject | Particle number emissions | es_ES |
dc.subject | Injection strategies | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Assessment on the consequences of injection strategies on combustion process and particle size distributions in Euro VI medium-duty diesel engine | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1177/1468087419865652 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TRA2014-58870-R/ES/REDUCCION DE LAS EMISIONES DE CO2 EN VEHICULOS PARA TRANSPORTE USANDO COMBUSTION DUAL NATURAL GAS-DIESEL/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics | es_ES |
dc.description.bibliographicCitation | Bermúdez, V.; García Martínez, A.; Villalta-Lara, D.; Soto, L. (2020). Assessment on the consequences of injection strategies on combustion process and particle size distributions in Euro VI medium-duty diesel engine. International Journal of Engine Research. 21(4):683-697. https://doi.org/10.1177/1468087419865652 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1177/1468087419865652 | es_ES |
dc.description.upvformatpinicio | 683 | es_ES |
dc.description.upvformatpfin | 697 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 21 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.pasarela | S\393084 | es_ES |
dc.contributor.funder | Volvo Group Trucks Technology | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Kemball-Cook, S., Yarwood, G., Johnson, J., Dornblaser, B., & Estes, M. (2015). Evaluating NOx emission inventories for regulatory air quality modeling using satellite and air quality model data. Atmospheric Environment, 117, 1-8. doi:10.1016/j.atmosenv.2015.07.002 | es_ES |
dc.description.references | Paulin, L., & Hansel, N. (2016). Particulate air pollution and impaired lung function. F1000Research, 5, 201. doi:10.12688/f1000research.7108.1 | es_ES |
dc.description.references | Hime, N., Marks, G., & Cowie, C. (2018). A Comparison of the Health Effects of Ambient Particulate Matter Air Pollution from Five Emission Sources. International Journal of Environmental Research and Public Health, 15(6), 1206. doi:10.3390/ijerph15061206 | es_ES |
dc.description.references | Johnson, T., & Joshi, A. (2018). Review of Vehicle Engine Efficiency and Emissions. SAE International Journal of Engines, 11(6), 1307-1330. doi:10.4271/2018-01-0329 | es_ES |
dc.description.references | Wu, Z., Rutland, C. J., & Han, Z. (2017). Numerical optimization of natural gas and diesel dual-fuel combustion for a heavy-duty engine operated at a medium load. International Journal of Engine Research, 19(6), 682-696. doi:10.1177/1468087417729255 | es_ES |
dc.description.references | Lapuerta, M., Hernández, J. J., Rodríguez-Fernández, J., Barba, J., Ramos, A., & Fernández-Rodríguez, D. (2017). Emission benefits from the use of n-butanol blends in a Euro 6 diesel engine. International Journal of Engine Research, 19(10), 1099-1112. doi:10.1177/1468087417742578 | es_ES |
dc.description.references | Chilumukuru, K., Gupta, A., Ruth, M., Cunningham, M., Kothandaraman, G., Cumaranatunge, L., & Hess, H. (2017). Aftertreatment Architecture and Control Methodologies for Future Light Duty Diesel Emission Regulations. SAE International Journal of Engines, 10(4), 1580-1587. doi:10.4271/2017-01-0911 | es_ES |
dc.description.references | Bermúdez, V., Luján, J. M., Piqueras, P., & Campos, D. (2014). Pollutants emission and particle behavior in a pre-turbo aftertreatment light-duty diesel engine. Energy, 66, 509-522. doi:10.1016/j.energy.2014.02.004 | es_ES |
dc.description.references | Lapuerta, M., Ramos, Á., Fernández-Rodríguez, D., & González-García, I. (2018). High-pressure versus low-pressure exhaust gas recirculation in a Euro 6 diesel engine with lean-NOx trap: Effectiveness to reduce NOx emissions. International Journal of Engine Research, 20(1), 155-163. doi:10.1177/1468087418817447 | es_ES |
dc.description.references | Rakopoulos, C. D., Rakopoulos, D. C., Mavropoulos, G. C., & Kosmadakis, G. M. (2018). Investigating the EGR rate and temperature impact on diesel engine combustion and emissions under various injection timings and loads by comprehensive two-zone modeling. Energy, 157, 990-1014. doi:10.1016/j.energy.2018.05.178 | es_ES |
dc.description.references | Du, W., Lou, J., Yan, Y., Bao, W., & Liu, F. (2017). Effects of injection pressure on diesel sprays in constant injection mass condition. Applied Thermal Engineering, 121, 234-241. doi:10.1016/j.applthermaleng.2017.04.075 | es_ES |
dc.description.references | Nishida, K., Zhu, J., Leng, X., & He, Z. (2017). Effects of micro-hole nozzle and ultra-high injection pressure on air entrainment, liquid penetration, flame lift-off and soot formation of diesel spray flame. International Journal of Engine Research, 18(1-2), 51-65. doi:10.1177/1468087416688805 | es_ES |
dc.description.references | Yamasaki, Y., Ikemura, R., & Kaneko, S. (2017). Model-based control of diesel engines with multiple fuel injections. International Journal of Engine Research, 19(2), 257-265. doi:10.1177/1468087417747738 | es_ES |
dc.description.references | Giechaskiel, B., Schiefer, E., Schindler, W., Axmann, H., & Dardiotis, C. (2013). Overview of Soot Emission Measurements Instrumentation: From Smoke and Filter Mass to Particle Number. SAE International Journal of Engines, 6(1), 10-22. doi:10.4271/2013-01-0138 | es_ES |
dc.description.references | Dickau, M., Olfert, J., Stettler, M. E. J., Boies, A., Momenimovahed, A., Thomson, K., … Johnson, M. (2016). Methodology for quantifying the volatile mixing state of an aerosol. Aerosol Science and Technology, 50(8), 759-772. doi:10.1080/02786826.2016.1185509 | es_ES |
dc.description.references | Lähde, T., Rönkkö, T., Virtanen, A., Schuck, T. J., Pirjola, L., Hämeri, K., … Keskinen, J. (2008). Heavy Duty Diesel Engine Exhaust Aerosol Particle and Ion Measurements. Environmental Science & Technology, 43(1), 163-168. doi:10.1021/es801690h | es_ES |
dc.description.references | Saxena, M. R., & Maurya, R. K. (2017). Effect of premixing ratio, injection timing and compression ratio on nano particle emissions from dual fuel non-road compression ignition engine fueled with gasoline/methanol (port injection) and diesel (direct injection). Fuel, 203, 894-914. doi:10.1016/j.fuel.2017.05.015 | es_ES |
dc.description.references | Gao, J., & Kuo, T.-W. (2018). Toward the accurate prediction of soot in engine applications. International Journal of Engine Research, 20(7), 706-717. doi:10.1177/1468087418773937 | es_ES |
dc.description.references | Zhang, Y., Ghandhi, J., & Rothamer, D. (2017). Comparisons of particle size distribution from conventional and advanced compression ignition combustion strategies. International Journal of Engine Research, 19(7), 699-717. doi:10.1177/1468087417721089 | es_ES |
dc.description.references | Lapuerta, M., Armas, O., & Gómez, A. (2003). Diesel Particle Size Distribution Estimation from Digital Image Analysis. Aerosol Science and Technology, 37(4), 369-381. doi:10.1080/02786820300970 | es_ES |
dc.description.references | Agarwal, A. K., Gupta, T., & Kothari, A. (2011). Particulate emissions from biodiesel vs diesel fuelled compression ignition engine. Renewable and Sustainable Energy Reviews, 15(6), 3278-3300. doi:10.1016/j.rser.2011.04.002 | es_ES |
dc.description.references | Bai, J., & Qiao, X. (2015). Crankcase gaseous and particle emissions in common rail diesel engine. International Journal of Engine Research, 17(2), 179-192. doi:10.1177/1468087414563585 | es_ES |
dc.description.references | Reijnders, J., Boot, M., & de Goey, P. (2018). Particle nucleation-accumulation mode trade-off: A second diesel dilemma? Journal of Aerosol Science, 124, 95-111. doi:10.1016/j.jaerosci.2018.06.013 | es_ES |
dc.description.references | Bonatesta, F., Chiappetta, E., & La Rocca, A. (2014). Part-load particulate matter from a GDI engine and the connection with combustion characteristics. Applied Energy, 124, 366-376. doi:10.1016/j.apenergy.2014.03.030 | es_ES |
dc.description.references | Desantes, J. M., Bermúdez, V., García, A., & Linares, W. G. (2011). A Comprehensive Study of Particle Size Distributions with the Use of PostInjection Strategies in DI Diesel Engines. Aerosol Science and Technology, 45(10), 1161-1175. doi:10.1080/02786826.2011.582898 | es_ES |
dc.description.references | Li, X., Guan, C., Luo, Y., & Huang, Z. (2015). Effect of multiple-injection strategies on diesel engine exhaust particle size and nanostructure. Journal of Aerosol Science, 89, 69-76. doi:10.1016/j.jaerosci.2015.07.008 | es_ES |
dc.description.references | Benajes, J., García, A., Monsalve-Serrano, J., Balloul, I., & Pradel, G. (2017). Evaluating the reactivity controlled compression ignition operating range limits in a high-compression ratio medium-duty diesel engine fueled with biodiesel and ethanol. International Journal of Engine Research, 18(1-2), 66-80. doi:10.1177/1468087416678500 | es_ES |
dc.description.references | Kakaee, A.-H., Nasiri-Toosi, A., Partovi, B., & Paykani, A. (2016). Effects of piston bowl geometry on combustion and emissions characteristics of a natural gas/diesel RCCI engine. Applied Thermal Engineering, 102, 1462-1472. doi:10.1016/j.applthermaleng.2016.03.162 | es_ES |
dc.description.references | Desantes, J. M., Bermúdez, V., Pastor, J. V., & Fuentes, E. (2004). Methodology for measuring exhaust aerosol size distributions from heavy duty diesel engines by means of a scanning mobility particle sizer. Measurement Science and Technology, 15(10), 2083-2098. doi:10.1088/0957-0233/15/10/019 | es_ES |
dc.description.references | Desantes, J. M., Bermúdez, V., Molina, S., & Linares, W. G. (2011). Methodology for measuring exhaust aerosol size distributions using an engine test under transient operating conditions. Measurement Science and Technology, 22(11), 115101. doi:10.1088/0957-0233/22/11/115101 | es_ES |
dc.description.references | Payri, F., Olmeda, P., Martín, J., & García, A. (2011). A complete 0D thermodynamic predictive model for direct injection diesel engines. Applied Energy, 88(12), 4632-4641. doi:10.1016/j.apenergy.2011.06.005 | es_ES |
dc.description.references | Benajes, J. V., López, J. J., Novella, R., & García, A. (2008). ADVANCED METHODOLOGY FOR IMPROVING TESTING EFFICIENCY IN A SINGLE-CYLINDER RESEARCH DIESEL ENGINE. Experimental Techniques, 32(6), 41-47. doi:10.1111/j.1747-1567.2007.00296.x | es_ES |
dc.description.references | Liu, Q., Fu, J., Zhu, G., Li, Q., Liu, J., Duan, X., & Guo, Q. (2018). Comparative study on thermodynamics, combustion and emissions of turbocharged gasoline direct injection (GDI) engine under NEDC and steady-state conditions. Energy Conversion and Management, 169, 111-123. doi:10.1016/j.enconman.2018.05.047 | es_ES |
dc.description.references | Seong, H. J., & Boehman, A. L. (2012). Studies of soot oxidative reactivity using a diffusion flame burner. Combustion and Flame, 159(5), 1864-1875. doi:10.1016/j.combustflame.2012.01.009 | es_ES |
dc.description.references | Desantes, J. M., Bermúdez, V., García, J. M., & Fuentes, E. (2005). Effects of current engine strategies on the exhaust aerosol particle size distribution from a Heavy-Duty Diesel Engine. Journal of Aerosol Science, 36(10), 1251-1276. doi:10.1016/j.jaerosci.2005.01.002 | es_ES |
dc.description.references | Lucachick, G., Curran, S., Storey, J., Prikhodko, V., & Northrop, W. F. (2016). Volatility characterization of nanoparticles from single and dual-fuel low temperature combustion in compression ignition engines. Aerosol Science and Technology, 50(5), 436-447. doi:10.1080/02786826.2016.1163320 | es_ES |
dc.description.references | Mohankumar, S., & Senthilkumar, P. (2017). Particulate matter formation and its control methodologies for diesel engine: A comprehensive review. Renewable and Sustainable Energy Reviews, 80, 1227-1238. doi:10.1016/j.rser.2017.05.133 | es_ES |
dc.description.references | Burtscher, H. (2005). Physical characterization of particulate emissions from diesel engines: a review. Journal of Aerosol Science, 36(7), 896-932. doi:10.1016/j.jaerosci.2004.12.001 | es_ES |