Mostrar el registro sencillo del ítem
dc.contributor.author | Pla Moreno, Benjamín | es_ES |
dc.contributor.author | De La Morena, Joaquín | es_ES |
dc.contributor.author | Bares-Moreno, Pau | es_ES |
dc.contributor.author | Jimenez, Irina Ayelen | es_ES |
dc.date.accessioned | 2021-07-14T03:31:01Z | |
dc.date.available | 2021-07-14T03:31:01Z | |
dc.date.issued | 2020-10 | es_ES |
dc.identifier.issn | 1468-0874 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/169175 | |
dc.description | This is the author's version of a work that was accepted for publication in International Journal of Engine Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published as https://doi.org/10.1177/1468087419885754. | es_ES |
dc.description.abstract | [EN] A control-oriented model of spark ignition combustion is presented. The model makes use of avaliable signals, such as spark advance, air mass, intake pressure, and lambda, to characterize not only the average combustion evolution but also the cycle-to-cycle variability. The conventional turbulent flame propagation model with two states, namely entrained mass and burnt mass, is improved by look-up tables at some parameters, and the cycle-to-cycle variability is estimated by propagation of an exogenous noise with a normal probabilistic distribution at the turbulent and laminar flame speed, which intends to simulate the unknowns at turbulent flow, temperature distribution, or initial kernel distribution. The model is able to estimate which is the expected variability during the combustion evolution and might be used online for characterizing the time response of closed-loop control actions or it can be used offline to improve the control strategies without large experimental test campaigns. Experimental data from a four-stroke commercial engine was used for calibration and validation purposes, demonstrating the capabilities of the model in steady and transient conditions. | es_ES |
dc.description.sponsorship | The authors appreciate the technical support and the clues given by J. Israel Sanchez for the model development and also acknowledge the support of Spanish Ministerio de Economia, Industria y Competitividad through project TRA2016-78717-R. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | SAGE Publications | es_ES |
dc.relation.ispartof | International Journal of Engine Research | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Spark ignited engines | es_ES |
dc.subject | Combustion model | es_ES |
dc.subject | Cycle-to-cycle variability | es_ES |
dc.subject | Combustion control | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.subject.classification | INGENIERIA AEROESPACIAL | es_ES |
dc.title | Cycle-to-cycle combustion variability modelling in spark ignited engines for control purposes | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1177/1468087419885754 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TRA2016-78717-R/ES/ESTRATEGIAS DE CONTROL BASADAS EN LA INFORMACION CONTEXTUAL DEL VEHICULO PARA LA REDUCCION DEL CONSUMO DE COMBUSTIBLE Y LAS EMISIONES EN CONDICIONES REALES DE CONDUCCION/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics | es_ES |
dc.description.bibliographicCitation | Pla Moreno, B.; De La Morena, J.; Bares-Moreno, P.; Jimenez, IA. (2020). Cycle-to-cycle combustion variability modelling in spark ignited engines for control purposes. International Journal of Engine Research. 21(8):1398-1411. https://doi.org/10.1177/1468087419885754 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1177/1468087419885754 | es_ES |
dc.description.upvformatpinicio | 1398 | es_ES |
dc.description.upvformatpfin | 1411 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 21 | es_ES |
dc.description.issue | 8 | es_ES |
dc.relation.pasarela | S\417662 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Wang, S., Prucka, R., Zhu, Q., Prucka, M., & Dourra, H. (2016). A Real-Time Model for Spark Ignition Engine Combustion Phasing Prediction. SAE International Journal of Engines, 9(2), 1180-1190. doi:10.4271/2016-01-0819 | es_ES |
dc.description.references | Kim, N., Ko, I., & Min, K. (2018). Development of a zero-dimensional turbulence model for a spark ignition engine. International Journal of Engine Research, 20(4), 441-451. doi:10.1177/1468087418760406 | es_ES |
dc.description.references | Wang, S., Zhu, Q., Prucka, R., Prucka, M., & Dourra, H. (2015). Input Adaptation for Control Oriented Physics-Based SI Engine Combustion Models Based on Cylinder Pressure Feedback. SAE International Journal of Engines, 8(4), 1463-1471. doi:10.4271/2015-01-0877 | es_ES |
dc.description.references | Zhen, X., Wang, Y., Xu, S., Zhu, Y., Tao, C., Xu, T., & Song, M. (2012). The engine knock analysis – An overview. Applied Energy, 92, 628-636. doi:10.1016/j.apenergy.2011.11.079 | es_ES |
dc.description.references | Bares, P., Selmanaj, D., Guardiola, C., & Onder, C. (2018). Knock probability estimation through an in-cylinder temperature model with exogenous noise. Mechanical Systems and Signal Processing, 98, 756-769. doi:10.1016/j.ymssp.2017.05.033 | es_ES |
dc.description.references | Zhang, Y., Shen, X., Wu, Y., & Shen, T. (2019). On-board knock probability map learning–based spark advance control for combustion engines. International Journal of Engine Research, 20(10), 1073-1088. doi:10.1177/1468087419858026 | es_ES |
dc.description.references | Spelina, J. M., Peyton Jones, J. C., & Frey, J. (2014). Stochastic simulation and analysis of a classical knock controller. International Journal of Engine Research, 16(3), 461-473. doi:10.1177/1468087414551073 | es_ES |
dc.description.references | Neumann, D., Jörg, C., Peschke, N., Schaub, J., & Schnorbus, T. (2017). Real-time capable simulation of diesel combustion processes for HiL applications. International Journal of Engine Research, 19(2), 214-229. doi:10.1177/1468087417726226 | es_ES |
dc.description.references | Pipitone, E. (2008). A Comparison Between Combustion Phase Indicators for Optimal Spark Timing. Journal of Engineering for Gas Turbines and Power, 130(5). doi:10.1115/1.2939012 | es_ES |
dc.description.references | Bares, P., Selmanaj, D., Guardiola, C., & Onder, C. (2018). A new knock event definition for knock detection and control optimization. Applied Thermal Engineering, 131, 80-88. doi:10.1016/j.applthermaleng.2017.11.138 | es_ES |
dc.description.references | Peyton Jones, J. C., Spelina, J. M., & Frey, J. (2013). Optimizing knock thresholds for improved knock control. International Journal of Engine Research, 15(1), 123-132. doi:10.1177/1468087413482321 | es_ES |
dc.description.references | Emiliano, P. (2014). Spark Ignition Feedback Control by Means of Combustion Phase Indicators on Steady and Transient Operation. Journal of Dynamic Systems, Measurement, and Control, 136(5). doi:10.1115/1.4026966 | es_ES |
dc.description.references | Zhu, Q., Prucka, R., Wang, S., Prucka, M., & Dourra, H. (2016). Model-Based Optimal Combustion Phasing Control Strategy for Spark Ignition Engines. SAE International Journal of Engines, 9(2), 1170-1179. doi:10.4271/2016-01-0818 | es_ES |
dc.description.references | Zhang, Y., & Shen, T. (2017). Cylinder pressure based combustion phase optimization and control in spark-ignited engines. Control Theory and Technology, 15(2), 83-91. doi:10.1007/s11768-017-6175-1 | es_ES |
dc.description.references | Zhang, Y., Shen, X., & Shen, T. (2018). A survey on online learning and optimization for spark advance control of SI engines. Science China Information Sciences, 61(7). doi:10.1007/s11432-017-9377-7 | es_ES |
dc.description.references | Corti, E., Forte, C., Mancini, G., & Moro, D. (2014). Automatic Combustion Phase Calibration With Extremum Seeking Approach. Journal of Engineering for Gas Turbines and Power, 136(9). doi:10.1115/1.4027188 | es_ES |
dc.description.references | Corti, E., Cerofolini, A., Cavina, N., Forte, C., Mancini, G., Moro, D., … Ravaglioli, V. (2014). Automatic Calibration of Control Parameters based on Merit Function Spectral Analysis. Energy Procedia, 45, 919-928. doi:10.1016/j.egypro.2014.01.097 | es_ES |
dc.description.references | Popovic, D., Jankovic, M., Magner, S., & Teel, A. R. (2006). Extremum seeking methods for optimization of variable cam timing engine operation. IEEE Transactions on Control Systems Technology, 14(3), 398-407. doi:10.1109/tcst.2005.863660 | es_ES |
dc.description.references | Hellstrom, E., Lee, D., Jiang, L., Stefanopoulou, A. G., & Yilmaz, H. (2013). On-Board Calibration of Spark Timing by Extremum Seeking for Flex-Fuel Engines. IEEE Transactions on Control Systems Technology, 21(6), 2273-2279. doi:10.1109/tcst.2012.2236093 | es_ES |
dc.description.references | Pera, C., Chevillard, S., & Reveillon, J. (2013). Effects of residual burnt gas heterogeneity on early flame propagation and on cyclic variability in spark-ignited engines. Combustion and Flame, 160(6), 1020-1032. doi:10.1016/j.combustflame.2013.01.009 | es_ES |
dc.description.references | Zhao, L., Moiz, A. A., Som, S., Fogla, N., Bybee, M., Wahiduzzaman, S., … Kodavasal, J. (2017). Examining the role of flame topologies and in-cylinder flow fields on cyclic variability in spark-ignited engines using large-eddy simulation. International Journal of Engine Research, 19(8), 886-904. doi:10.1177/1468087417732447 | es_ES |
dc.description.references | Pera, C., Knop, V., & Reveillon, J. (2015). Influence of flow and ignition fluctuations on cycle-to-cycle variations in early flame kernel growth. Proceedings of the Combustion Institute, 35(3), 2897-2905. doi:10.1016/j.proci.2014.07.037 | es_ES |
dc.description.references | Schiffmann, P., Reuss, D. L., & Sick, V. (2017). Empirical investigation of spark-ignited flame-initiation cycle-to-cycle variability in a homogeneous charge reciprocating engine. International Journal of Engine Research, 19(5), 491-508. doi:10.1177/1468087417720558 | es_ES |
dc.description.references | Galloni, E. (2009). Analyses about parameters that affect cyclic variation in a spark ignition engine. Applied Thermal Engineering, 29(5-6), 1131-1137. doi:10.1016/j.applthermaleng.2008.06.001 | es_ES |
dc.description.references | Tamaki, S., Sakayanagi, Y., Sekiguchi, K., Ibuki, T., Tahara, K., & Sampei, M. (2014). On-line Feedforward Map Generation for Engine Ignition Timing Control. IFAC Proceedings Volumes, 47(3), 5691-5696. doi:10.3182/20140824-6-za-1003.01886 | es_ES |
dc.description.references | Zhang, Y., & Shen, T. (2018). Combustion Variation Feedback Control Approach for Multi-cylinder Spark Ignition Engines. IFAC-PapersOnLine, 51(31), 105-110. doi:10.1016/j.ifacol.2018.10.020 | es_ES |
dc.description.references | Corti, E., & Forte, C. (2011). Spark Advance Real-Time Optimization Based on Combustion Analysis. Journal of Engineering for Gas Turbines and Power, 133(9). doi:10.1115/1.4002919 | es_ES |
dc.description.references | Gao, J., Wu, Y., & Shen, T. (2016). Experimental comparisons of hypothesis test and moving average based combustion phase controllers. ISA Transactions, 65, 504-515. doi:10.1016/j.isatra.2016.09.003 | es_ES |
dc.description.references | Gao, J., Wu, Y., & Shen, T. (2017). A statistical combustion phase control approach of SI engines. Mechanical Systems and Signal Processing, 85, 218-235. doi:10.1016/j.ymssp.2016.08.007 | es_ES |
dc.description.references | Lee, D., Jiang, L., Yilmaz, H., & Stefanopoulou, A. G. (2010). Preliminary Results on Optimal Variable Valve Timing and Spark Timing Control via Extremum Seeking. IFAC Proceedings Volumes, 43(18), 377-384. doi:10.3182/20100913-3-us-2015.00038 | es_ES |
dc.description.references | Di Mauro, A., Chen, H., & Sick, V. (2019). Neural network prediction of cycle-to-cycle power variability in a spark-ignited internal combustion engine. Proceedings of the Combustion Institute, 37(4), 4937-4944. doi:10.1016/j.proci.2018.08.058 | es_ES |
dc.description.references | Lapuerta, M., Armas, O., & Hernández, J. J. (1999). Diagnosis of DI Diesel combustion from in-cylinder pressure signal by estimation of mean thermodynamic properties of the gas. Applied Thermal Engineering, 19(5), 513-529. doi:10.1016/s1359-4311(98)00075-1 | es_ES |
dc.description.references | Ceviz, M. A., & Kaymaz, İ. (2005). Temperature and air–fuel ratio dependent specific heat ratio functions for lean burned and unburned mixture. Energy Conversion and Management, 46(15-16), 2387-2404. doi:10.1016/j.enconman.2004.12.009 | es_ES |
dc.description.references | Guardiola, C., Triantopoulos, V., Bares, P., Bohac, S., & Stefanopoulou, A. (2016). Simultaneous Estimation of Intake and Residual Mass Using In-Cylinder Pressure in an Engine with Negative Valve Overlap. IFAC-PapersOnLine, 49(11), 461-468. doi:10.1016/j.ifacol.2016.08.068 | es_ES |
dc.description.references | Wang, S., Prucka, R., Prucka, M., & Dourra, H. (2014). Control-oriented residual gas mass prediction for spark ignition engines. International Journal of Engine Research, 16(7), 897-907. doi:10.1177/1468087414555732 | es_ES |
dc.description.references | Keck, J. C. (1982). Turbulent flame structure and speed in spark-ignition engines. Symposium (International) on Combustion, 19(1), 1451-1466. doi:10.1016/s0082-0784(82)80322-6 | es_ES |