- -

Estimation of the in-cylinder residual mass fraction at Intake Valve Closing in a 2-stroke High-Speed Direct-Injection Compression-Ignition engine

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Estimation of the in-cylinder residual mass fraction at Intake Valve Closing in a 2-stroke High-Speed Direct-Injection Compression-Ignition engine

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Torregrosa, A. J. es_ES
dc.contributor.author Martín, Jaime es_ES
dc.contributor.author Novella Rosa, Ricardo es_ES
dc.contributor.author Thein, Kevin es_ES
dc.date.accessioned 2021-07-14T03:31:16Z
dc.date.available 2021-07-14T03:31:16Z
dc.date.issued 2020-06 es_ES
dc.identifier.issn 1468-0874 es_ES
dc.identifier.uri http://hdl.handle.net/10251/169180
dc.description This is the author's version of a work that was accepted for publication in International Journal of Engine Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published as https://doi.org/10.1177/1468087418813406. es_ES
dc.description.abstract [EN] New combustion concepts and engine designs are being currently investigated in order to comply with upcoming pollutant regulations and reduce fuel consumption. In this context, two-stroke architectures appear as a promising solution for the implementation of some combustion concepts. However, scavenging processes in a two-stroke engine are much more challenging than for a four-stroke engine, and the residual mass of burnt gases retained inside the cylinder needs to be properly determined in order to keep control over the in-cylinder composition, hence over the combustion conditions and pollutant emissions. In this study, a new methodology for the estimation of the internal residual gas fraction is introduced, which is based on the thermodynamic processes occurring in the engine investigated and makes use of basic engine instrumentation and measurement equipment usually available in a conventional test cell. Several versions of the estimator were developed so that different requirements could be met, such as those of real-time estimation on an engine test bench but with reduced precision or, on the contrary, highly precise but time-consuming computations for post-processing purposes and combustion diagnosis. The consistency of the internal residual gas estimator was then validated through its application to real engine tests at different operating points. es_ES
dc.description.sponsorship The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This research has been sponsored by the European Union in framework of the REWARD project, Horizon 2020 research and innovation program under grant agreement no. 636380. The authors kindly recognize the technical support provided by Mr Gilles Coma and his research group at RENAULT SAS, and also by the research group at IFPEN, along the development of the investigations presented here. es_ES
dc.language Inglés es_ES
dc.publisher SAGE Publications es_ES
dc.relation.ispartof International Journal of Engine Research es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Engine testing es_ES
dc.subject Combustion diagnostics es_ES
dc.subject Two-stroke engine es_ES
dc.subject Residual gas fraction es_ES
dc.subject Engine thermodynamics es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Estimation of the in-cylinder residual mass fraction at Intake Valve Closing in a 2-stroke High-Speed Direct-Injection Compression-Ignition engine es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1177/1468087418813406 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/636380/EU/REal World Advanced Technologies foR Diesel Engines/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Torregrosa, AJ.; Martín, J.; Novella Rosa, R.; Thein, K. (2020). Estimation of the in-cylinder residual mass fraction at Intake Valve Closing in a 2-stroke High-Speed Direct-Injection Compression-Ignition engine. International Journal of Engine Research. 21(5):838-855. https://doi.org/10.1177/1468087418813406 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1177/1468087418813406 es_ES
dc.description.upvformatpinicio 838 es_ES
dc.description.upvformatpfin 855 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.description.issue 5 es_ES
dc.relation.pasarela S\383346 es_ES
dc.contributor.funder European Commission es_ES
dc.description.references Galindo, J., Luján, J. M., Serrano, J. R., & Hernández, L. (2005). Combustion simulation of turbocharger HSDI Diesel engines during transient operation using neural networks. Applied Thermal Engineering, 25(5-6), 877-898. doi:10.1016/j.applthermaleng.2004.08.004 es_ES
dc.description.references Payri, F., Benajes, J., Galindo, J., & Serrano, J. R. (2002). Modelling of turbocharged diesel engines in transient operation. Part 2: Wave action models for calculating the transient operation in a high speed direct injection engine. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 216(6), 479-493. doi:10.1243/09544070260137507 es_ES
dc.description.references Rakopoulos, C. ., Rakopoulos, D. ., Giakoumis, E. ., & Kyritsis, D. . (2004). Validation and sensitivity analysis of a two zone Diesel engine model for combustion and emissions prediction. Energy Conversion and Management, 45(9-10), 1471-1495. doi:10.1016/j.enconman.2003.09.012 es_ES
dc.description.references Gatowski JA, Balles EN, Chun KM, Nelson FE, Ekchian JA, Heywood JB. Heat release analysis of engine pressure data. SAE technical paper 841359, 1984. es_ES
dc.description.references Lapuerta, M., Armas, O., & Hernández, J. J. (1999). Diagnosis of DI Diesel combustion from in-cylinder pressure signal by estimation of mean thermodynamic properties of the gas. Applied Thermal Engineering, 19(5), 513-529. doi:10.1016/s1359-4311(98)00075-1 es_ES
dc.description.references Arrègle, J., López, J. J., Garcı́a, J. M., & Fenollosa, C. (2003). Development of a zero-dimensional Diesel combustion model. Part 1: Analysis of the quasi-steady diffusion combustion phase. Applied Thermal Engineering, 23(11), 1301-1317. doi:10.1016/s1359-4311(03)00079-6 es_ES
dc.description.references Arrègle, J., López, J. J., Garcı́a, J. M., & Fenollosa, C. (2003). Development of a zero-dimensional Diesel combustion model. Applied Thermal Engineering, 23(11), 1319-1331. doi:10.1016/s1359-4311(03)00080-2 es_ES
dc.description.references Li J, Chae JO, Park SB, Paik HJ, Park JK, Jeong YS, et al. Effect of intake composition on combustion and emission characteristics of DI diesel engine at high intake pressure. SAE technical paper 970322, 1997. es_ES
dc.description.references Brown WL. Methods for evaluating requirements and errors in cylinder pressure measurement. SAE technical paper 670008, 1968. es_ES
dc.description.references Lancaster DR, Krieger RB, Lienesch JH. Measurement and analysis of engine pressure data. SAE technical paper 750026, 1975. es_ES
dc.description.references Ghojel, J., & Honnery, D. (2005). Heat release model for the combustion of diesel oil emulsions in DI diesel engines. Applied Thermal Engineering, 25(14-15), 2072-2085. doi:10.1016/j.applthermaleng.2005.01.016 es_ES
dc.description.references Wu, Y., Wang, Y., Zhen, X., Guan, S., & Wang, J. (2014). Three-dimensional CFD (computational fluid dynamics) analysis of scavenging process in a two-stroke free-piston engine. Energy, 68, 167-173. doi:10.1016/j.energy.2014.02.107 es_ES
dc.description.references Yuan, C., Feng, H., He, Y., & Xu, J. (2016). Combustion characteristics analysis of a free-piston engine generator coupling with dynamic and scavenging. Energy, 102, 637-649. doi:10.1016/j.energy.2016.02.131 es_ES
dc.description.references Cheung HM, Heywood JB. Evaluation of a one-zone burn-rate analysis procedure using production SI engine pressure data. SAE technical paper 932749, 1993. es_ES
dc.description.references Brunt, M. F. J., Rai, H., & Emtage, A. L. (1998). The Calculation of Heat Release Energy from Engine Cylinder Pressure Data. SAE Technical Paper Series. doi:10.4271/981052 es_ES
dc.description.references Payri, F., Molina, S., Martín, J., & Armas, O. (2006). Influence of measurement errors and estimated parameters on combustion diagnosis. Applied Thermal Engineering, 26(2-3), 226-236. doi:10.1016/j.applthermaleng.2005.05.006 es_ES
dc.description.references Broatch, A., Ruiz, S., Margot, X., & Gil, A. (2010). Methodology to estimate the threshold in-cylinder temperature for self-ignition of fuel during cold start of Diesel engines. Energy, 35(5), 2251-2260. doi:10.1016/j.energy.2010.02.012 es_ES
dc.description.references Olsen, D. B., Hutcherson, G. C., Willson, B. D., & Mitchell, C. E. (2002). Development of the Tracer Gas Method for Large Bore Natural Gas Engines—Part I: Method Validation. Journal of Engineering for Gas Turbines and Power, 124(3), 678-685. doi:10.1115/1.1454116 es_ES
dc.description.references Olsen, D. B., Hutcherson, G. C., Willson, B. D., & Mitchell, C. E. (2002). Development of the Tracer Gas Method for Large Bore Natural Gas Engines—Part II: Measurement of Scavenging Parameters. Journal of Engineering for Gas Turbines and Power, 124(3), 686-694. doi:10.1115/1.1454117 es_ES
dc.description.references Benajes, J., Olmeda, P., Martín, J., & Carreño, R. (2014). A new methodology for uncertainties characterization in combustion diagnosis and thermodynamic modelling. Applied Thermal Engineering, 71(1), 389-399. doi:10.1016/j.applthermaleng.2014.07.010 es_ES
dc.description.references Payri, F., Olmeda, P., Martín, J., & García, A. (2011). A complete 0D thermodynamic predictive model for direct injection diesel engines. Applied Energy, 88(12), 4632-4641. doi:10.1016/j.apenergy.2011.06.005 es_ES
dc.description.references Benajes, J., Novella, R., De Lima, D., Tribotté, P., Quechon, N., Obernesser, P., & Dugue, V. (2013). Analysis of the combustion process, pollutant emissions and efficiency of an innovative 2-stroke HSDI engine designed for automotive applications. Applied Thermal Engineering, 58(1-2), 181-193. doi:10.1016/j.applthermaleng.2013.03.050 es_ES
dc.description.references Benajes, J., Martín, J., Novella, R., & Thein, K. (2016). Understanding the performance of the multiple injection gasoline partially premixed combustion concept implemented in a 2-Stroke high speed direct injection compression ignition engine. Applied Energy, 161, 465-475. doi:10.1016/j.apenergy.2015.10.034 es_ES
dc.description.references Benajes, J., Novella, R., De Lima, D., & Thein, K. (2017). Impact of injection settings operating with the gasoline Partially Premixed Combustion concept in a 2-stroke HSDI compression ignition engine. Applied Energy, 193, 515-530. doi:10.1016/j.apenergy.2017.02.044 es_ES
dc.description.references Galindo, J., Serrano, J. R., Arnau, F. J., & Piqueras, P. (2009). Description of a Semi-Independent Time Discretization Methodology for a One-Dimensional Gas Dynamics Model. Journal of Engineering for Gas Turbines and Power, 131(3). doi:10.1115/1.2983015 es_ES
dc.description.references CARREÑO ARANGO, R. (s. f.). A comprehensive methodology to analyse the Global Energy Balance in Reciprocating Internal Combustion Engines. doi:10.4995/thesis/10251/73069 es_ES
dc.description.references Benajes, J., Olmeda, P., Martín, J., Blanco-Cavero, D., & Warey, A. (2017). Evaluation of swirl effect on the Global Energy Balance of a HSDI Diesel engine. Energy, 122, 168-181. doi:10.1016/j.energy.2017.01.082 es_ES
dc.description.references Payri, F., López, J. J., Martín, J., & Carreño, R. (2018). Improvement and application of a methodology to perform the Global Energy Balance in internal combustion engines. Part 1: Global Energy Balance tool development and calibration. Energy, 152, 666-681. doi:10.1016/j.energy.2018.03.118 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem