- -

Estimation of the in-cylinder residual mass fraction at Intake Valve Closing in a 2-stroke High-Speed Direct-Injection Compression-Ignition engine

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Estimation of the in-cylinder residual mass fraction at Intake Valve Closing in a 2-stroke High-Speed Direct-Injection Compression-Ignition engine

Mostrar el registro completo del ítem

Torregrosa, AJ.; Martín, J.; Novella Rosa, R.; Thein, K. (2020). Estimation of the in-cylinder residual mass fraction at Intake Valve Closing in a 2-stroke High-Speed Direct-Injection Compression-Ignition engine. International Journal of Engine Research. 21(5):838-855. https://doi.org/10.1177/1468087418813406

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/169180

Ficheros en el ítem

Metadatos del ítem

Título: Estimation of the in-cylinder residual mass fraction at Intake Valve Closing in a 2-stroke High-Speed Direct-Injection Compression-Ignition engine
Autor: Torregrosa, A. J. Martín, Jaime Novella Rosa, Ricardo Thein, Kevin
Entidad UPV: Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Fecha difusión:
Resumen:
[EN] New combustion concepts and engine designs are being currently investigated in order to comply with upcoming pollutant regulations and reduce fuel consumption. In this context, two-stroke architectures appear as a ...[+]
Palabras clave: Engine testing , Combustion diagnostics , Two-stroke engine , Residual gas fraction , Engine thermodynamics
Derechos de uso: Reserva de todos los derechos
Fuente:
International Journal of Engine Research. (issn: 1468-0874 )
DOI: 10.1177/1468087418813406
Editorial:
SAGE Publications
Versión del editor: https://doi.org/10.1177/1468087418813406
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/636380/EU/REal World Advanced Technologies foR Diesel Engines/
Descripción: This is the author's version of a work that was accepted for publication in International Journal of Engine Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published as https://doi.org/10.1177/1468087418813406.
Agradecimientos:
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This research has been sponsored by the European Union in framework of the REWARD project, ...[+]
Tipo: Artículo

References

Galindo, J., Luján, J. M., Serrano, J. R., & Hernández, L. (2005). Combustion simulation of turbocharger HSDI Diesel engines during transient operation using neural networks. Applied Thermal Engineering, 25(5-6), 877-898. doi:10.1016/j.applthermaleng.2004.08.004

Payri, F., Benajes, J., Galindo, J., & Serrano, J. R. (2002). Modelling of turbocharged diesel engines in transient operation. Part 2: Wave action models for calculating the transient operation in a high speed direct injection engine. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 216(6), 479-493. doi:10.1243/09544070260137507

Rakopoulos, C. ., Rakopoulos, D. ., Giakoumis, E. ., & Kyritsis, D. . (2004). Validation and sensitivity analysis of a two zone Diesel engine model for combustion and emissions prediction. Energy Conversion and Management, 45(9-10), 1471-1495. doi:10.1016/j.enconman.2003.09.012 [+]
Galindo, J., Luján, J. M., Serrano, J. R., & Hernández, L. (2005). Combustion simulation of turbocharger HSDI Diesel engines during transient operation using neural networks. Applied Thermal Engineering, 25(5-6), 877-898. doi:10.1016/j.applthermaleng.2004.08.004

Payri, F., Benajes, J., Galindo, J., & Serrano, J. R. (2002). Modelling of turbocharged diesel engines in transient operation. Part 2: Wave action models for calculating the transient operation in a high speed direct injection engine. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 216(6), 479-493. doi:10.1243/09544070260137507

Rakopoulos, C. ., Rakopoulos, D. ., Giakoumis, E. ., & Kyritsis, D. . (2004). Validation and sensitivity analysis of a two zone Diesel engine model for combustion and emissions prediction. Energy Conversion and Management, 45(9-10), 1471-1495. doi:10.1016/j.enconman.2003.09.012

Gatowski JA, Balles EN, Chun KM, Nelson FE, Ekchian JA, Heywood JB. Heat release analysis of engine pressure data. SAE technical paper 841359, 1984.

Lapuerta, M., Armas, O., & Hernández, J. J. (1999). Diagnosis of DI Diesel combustion from in-cylinder pressure signal by estimation of mean thermodynamic properties of the gas. Applied Thermal Engineering, 19(5), 513-529. doi:10.1016/s1359-4311(98)00075-1

Arrègle, J., López, J. J., Garcı́a, J. M., & Fenollosa, C. (2003). Development of a zero-dimensional Diesel combustion model. Part 1: Analysis of the quasi-steady diffusion combustion phase. Applied Thermal Engineering, 23(11), 1301-1317. doi:10.1016/s1359-4311(03)00079-6

Arrègle, J., López, J. J., Garcı́a, J. M., & Fenollosa, C. (2003). Development of a zero-dimensional Diesel combustion model. Applied Thermal Engineering, 23(11), 1319-1331. doi:10.1016/s1359-4311(03)00080-2

Li J, Chae JO, Park SB, Paik HJ, Park JK, Jeong YS, et al. Effect of intake composition on combustion and emission characteristics of DI diesel engine at high intake pressure. SAE technical paper 970322, 1997.

Brown WL. Methods for evaluating requirements and errors in cylinder pressure measurement. SAE technical paper 670008, 1968.

Lancaster DR, Krieger RB, Lienesch JH. Measurement and analysis of engine pressure data. SAE technical paper 750026, 1975.

Ghojel, J., & Honnery, D. (2005). Heat release model for the combustion of diesel oil emulsions in DI diesel engines. Applied Thermal Engineering, 25(14-15), 2072-2085. doi:10.1016/j.applthermaleng.2005.01.016

Wu, Y., Wang, Y., Zhen, X., Guan, S., & Wang, J. (2014). Three-dimensional CFD (computational fluid dynamics) analysis of scavenging process in a two-stroke free-piston engine. Energy, 68, 167-173. doi:10.1016/j.energy.2014.02.107

Yuan, C., Feng, H., He, Y., & Xu, J. (2016). Combustion characteristics analysis of a free-piston engine generator coupling with dynamic and scavenging. Energy, 102, 637-649. doi:10.1016/j.energy.2016.02.131

Cheung HM, Heywood JB. Evaluation of a one-zone burn-rate analysis procedure using production SI engine pressure data. SAE technical paper 932749, 1993.

Brunt, M. F. J., Rai, H., & Emtage, A. L. (1998). The Calculation of Heat Release Energy from Engine Cylinder Pressure Data. SAE Technical Paper Series. doi:10.4271/981052

Payri, F., Molina, S., Martín, J., & Armas, O. (2006). Influence of measurement errors and estimated parameters on combustion diagnosis. Applied Thermal Engineering, 26(2-3), 226-236. doi:10.1016/j.applthermaleng.2005.05.006

Broatch, A., Ruiz, S., Margot, X., & Gil, A. (2010). Methodology to estimate the threshold in-cylinder temperature for self-ignition of fuel during cold start of Diesel engines. Energy, 35(5), 2251-2260. doi:10.1016/j.energy.2010.02.012

Olsen, D. B., Hutcherson, G. C., Willson, B. D., & Mitchell, C. E. (2002). Development of the Tracer Gas Method for Large Bore Natural Gas Engines—Part I: Method Validation. Journal of Engineering for Gas Turbines and Power, 124(3), 678-685. doi:10.1115/1.1454116

Olsen, D. B., Hutcherson, G. C., Willson, B. D., & Mitchell, C. E. (2002). Development of the Tracer Gas Method for Large Bore Natural Gas Engines—Part II: Measurement of Scavenging Parameters. Journal of Engineering for Gas Turbines and Power, 124(3), 686-694. doi:10.1115/1.1454117

Benajes, J., Olmeda, P., Martín, J., & Carreño, R. (2014). A new methodology for uncertainties characterization in combustion diagnosis and thermodynamic modelling. Applied Thermal Engineering, 71(1), 389-399. doi:10.1016/j.applthermaleng.2014.07.010

Payri, F., Olmeda, P., Martín, J., & García, A. (2011). A complete 0D thermodynamic predictive model for direct injection diesel engines. Applied Energy, 88(12), 4632-4641. doi:10.1016/j.apenergy.2011.06.005

Benajes, J., Novella, R., De Lima, D., Tribotté, P., Quechon, N., Obernesser, P., & Dugue, V. (2013). Analysis of the combustion process, pollutant emissions and efficiency of an innovative 2-stroke HSDI engine designed for automotive applications. Applied Thermal Engineering, 58(1-2), 181-193. doi:10.1016/j.applthermaleng.2013.03.050

Benajes, J., Martín, J., Novella, R., & Thein, K. (2016). Understanding the performance of the multiple injection gasoline partially premixed combustion concept implemented in a 2-Stroke high speed direct injection compression ignition engine. Applied Energy, 161, 465-475. doi:10.1016/j.apenergy.2015.10.034

Benajes, J., Novella, R., De Lima, D., & Thein, K. (2017). Impact of injection settings operating with the gasoline Partially Premixed Combustion concept in a 2-stroke HSDI compression ignition engine. Applied Energy, 193, 515-530. doi:10.1016/j.apenergy.2017.02.044

Galindo, J., Serrano, J. R., Arnau, F. J., & Piqueras, P. (2009). Description of a Semi-Independent Time Discretization Methodology for a One-Dimensional Gas Dynamics Model. Journal of Engineering for Gas Turbines and Power, 131(3). doi:10.1115/1.2983015

CARREÑO ARANGO, R. (s. f.). A comprehensive methodology to analyse the Global Energy Balance in Reciprocating Internal Combustion Engines. doi:10.4995/thesis/10251/73069

Benajes, J., Olmeda, P., Martín, J., Blanco-Cavero, D., & Warey, A. (2017). Evaluation of swirl effect on the Global Energy Balance of a HSDI Diesel engine. Energy, 122, 168-181. doi:10.1016/j.energy.2017.01.082

Payri, F., López, J. J., Martín, J., & Carreño, R. (2018). Improvement and application of a methodology to perform the Global Energy Balance in internal combustion engines. Part 1: Global Energy Balance tool development and calibration. Energy, 152, 666-681. doi:10.1016/j.energy.2018.03.118

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem