dc.contributor.author |
Rosas-Laverde, Nelly Maria
|
es_ES |
dc.contributor.author |
Pruna, Alina Iuliana
|
es_ES |
dc.contributor.author |
Cembrero Gil, Jesús
|
es_ES |
dc.contributor.author |
Orozco-Messana, Javier
|
es_ES |
dc.contributor.author |
Manjón, Francisco-Javier
|
es_ES |
dc.date.accessioned |
2021-07-14T03:31:32Z |
|
dc.date.available |
2021-07-14T03:31:32Z |
|
dc.date.issued |
2019-12 |
es_ES |
dc.identifier.issn |
0366-3175 |
es_ES |
dc.identifier.uri |
http://hdl.handle.net/10251/169187 |
|
dc.description.abstract |
[EN] We report the fabrication of ZnO/Cu2O heterojunction solar cells by means of the electrodeposition technique. The effect of electrolyte medium for the ZnO deposition, annealing treatment and interface modification with graphene oxide (GO) layer on the photoelectrical properties was analyzed. The electrochemical results indicated a markedly dependent Cu2O film electrodeposition on the GO-modified ZnO films. The modification of ZnO/Cu2O interface with GO nanosheets and annealing treatment results in improved interface properties, varying morphology and defects in ZnO lattice that further lead to enhanced performance of the proposed heterojunction solar cells. While the obtained results indicate that the properties of GO coating need to be tailored for improved performance, a synergetic effect of the GO addition and annealing treatment on the photoelectric properties of the electrodeposited heterojunction is achieved. (C) 2019 SECV. Published by Elsevier Espana, S.L.U. |
es_ES |
dc.description.abstract |
[ES] Se presenta la fabricación de celdas solares de heterounión de ZnO/Cu2O obtenidas mediante la técnica de electrodeposición. Se analizó el efecto del electrolito utilizado para la deposición de ZnO, el tratamiento térmico aplicado y la modificación de la interfaz con una capa de óxido de grafeno (GO) sobre las propiedades fotoeléctricas. Los resultados electroquímicos indicaron que existe una marcada dependencia de electrodeposición de capa de Cu2O sobre las películas de ZnO modificadas con GO. La modificación de la interfaz ZnO/Cu2O con nanohojas de GO y el tratamiento térmico dan como resultado mejoras en las propiedades de la interfaz, una morfología variable y defectos en la red de ZnO que conducen a un mejor rendimiento de las celdas solares de heterounión propuestas. Si bien los resultados obtenidos indican que las propiedades del recubrimiento de GO deben adaptarse para mejorar el rendimiento, se logra un efecto sinérgico del tratamiento de adición y térmico de GO aplicados sobre las propiedades fotoeléctricas de la heterounión electrodepositada. |
es_ES |
dc.description.sponsorship |
Financial support from Escuela Politécnica Nacional (project number PIMI 15-09), Secretaría de Educación Superior, Ciencia, Tecnología e Innovación (SENESCYT) of Ecuador, Romanian National Authority for Scientific Research and Innovation CNCS ¿ UEFISCDI (project number PN-III-P1-1.1-TE-2016-1544), Spanish government MINECO (projects MAT2016-75586-C4-2-P and MAT2015-71070-REDC) and from Generalitat Valenciana (project PROMETEO 2018/123 ¿ EFIMAT) is gratefully acknowledged. In addition, authors would like to thank to the Microscopy Service of UPV and Dr. David Busquets-Mataix for useful advice. |
es_ES |
dc.language |
Inglés |
es_ES |
dc.publisher |
Elsevier |
es_ES |
dc.relation.ispartof |
Boletín de la Sociedad Española de Cerámica y Vidrio |
es_ES |
dc.rights |
Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) |
es_ES |
dc.subject |
Electrochemical deposition |
es_ES |
dc.subject |
ZnO |
es_ES |
dc.subject |
Cu2O |
es_ES |
dc.subject |
Solar cells |
es_ES |
dc.subject |
Deposición electroquímica |
es_ES |
dc.subject |
Celdas solares |
es_ES |
dc.subject.classification |
CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA |
es_ES |
dc.subject.classification |
FISICA APLICADA |
es_ES |
dc.title |
Performance of graphene oxide-modified electrodeposited ZnO/Cu2O heterojunction solar cells |
es_ES |
dc.title.alternative |
Rendimiento de las celdas solares de heterounión ZnO/Cu2O modificadas con óxido de grafeno |
es_ES |
dc.type |
Artículo |
es_ES |
dc.identifier.doi |
10.1016/j.bsecv.2019.06.002 |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/EPN//PIMI 15-09/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/CNCS//PN-III-P1-1.1-TE-2016-1544/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F123/ES/Materiales avanzados para el uso eficiente de la energia (EFIMAT)/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/MINECO//MAT2016-75586-C4-2-P/ES/COMPUESTOS ABO3 Y A2X3 EN CONDICIONES EXTREMAS DE PRESION Y TEMPERATURA/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/MINECO//MAT2015-71070-REDC/ES/MATERIA A ALTA PRESION. MALTA-CONSOLIDER TEAM/ |
es_ES |
dc.rights.accessRights |
Abierto |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials |
es_ES |
dc.description.bibliographicCitation |
Rosas-Laverde, NM.; Pruna, AI.; Cembrero Gil, J.; Orozco-Messana, J.; Manjón, F. (2019). Performance of graphene oxide-modified electrodeposited ZnO/Cu2O heterojunction solar cells. Boletín de la Sociedad Española de Cerámica y Vidrio. 58(6):263-273. https://doi.org/10.1016/j.bsecv.2019.06.002 |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.publisherversion |
https://doi.org/10.1016/j.bsecv.2019.06.002 |
es_ES |
dc.description.upvformatpinicio |
263 |
es_ES |
dc.description.upvformatpfin |
273 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
58 |
es_ES |
dc.description.issue |
6 |
es_ES |
dc.relation.pasarela |
S\398421 |
es_ES |
dc.contributor.funder |
Generalitat Valenciana |
es_ES |
dc.contributor.funder |
National Research Council, Rumanía |
es_ES |
dc.contributor.funder |
Escuela Politécnica Nacional, Ecuador |
es_ES |
dc.contributor.funder |
Ministerio de Economía y Competitividad |
es_ES |
dc.contributor.funder |
Secretaría de Educación Superior, Ciencia, Tecnología e Innovación, Ecuador |
es_ES |
dc.description.references |
Kathalingam, A., Vikraman, D., Kim, H.-S., & Park, H. J. (2017). Facile fabrication of n-ZnO nanorods/p-Cu 2 O heterojunction and its photodiode property. Optical Materials, 66, 122-130. doi:10.1016/j.optmat.2017.01.051 |
es_ES |
dc.description.references |
Panigrahi, S., Nunes, D., Calmeiro, T., Kardarian, K., Martins, R., & Fortunato, E. (2017). Oxide-Based Solar Cell: Impact of Layer Thicknesses on the Device Performance. ACS Combinatorial Science, 19(2), 113-120. doi:10.1021/acscombsci.6b00154 |
es_ES |
dc.description.references |
Makhlouf, H., Weber, M., Messaoudi, O., Tingry, S., Moret, M., Briot, O., … Bechelany, M. (2017). Study of Cu 2 O\ZnO nanowires heterojunction designed by combining electrodeposition and atomic layer deposition. Applied Surface Science, 426, 301-306. doi:10.1016/j.apsusc.2017.07.130 |
es_ES |
dc.description.references |
Cheng, K., Li, Q., Meng, J., Han, X., Wu, Y., Wang, S., … Du, Z. (2013). Interface engineering for efficient charge collection in Cu2O/ZnO heterojunction solar cells with ordered ZnO cavity-like nanopatterns. Solar Energy Materials and Solar Cells, 116, 120-125. doi:10.1016/j.solmat.2013.04.021 |
es_ES |
dc.description.references |
Perng, D.-C., Hong, M.-H., Chen, K.-H., & Chen, K.-H. (2017). Enhancement of short-circuit current density in Cu2O/ZnO heterojunction solar cells. Journal of Alloys and Compounds, 695, 549-554. doi:10.1016/j.jallcom.2016.11.119 |
es_ES |
dc.description.references |
Zamzuri, M., Sasano, J., Mohamad, F. B., & Izaki, M. (2015). Substrate type < 111 >-Cu2O/<0001 >-ZnO photovoltaic device prepared by photo-assisted electrodeposition. Thin Solid Films, 595, 136-141. doi:10.1016/j.tsf.2015.10.054 |
es_ES |
dc.description.references |
Zhou, X., Xie, Y., Ma, J., Mi, H., Yang, J., Cheng, J., & Hoang, T. K. A. (2017). Synthesis of hierarchical structure cuprous oxide by a novel two-step hydrothermal method and the effect of its addition on the photovoltaic properties of ZnO-based dye-sensitized solar cells. Journal of Alloys and Compounds, 721, 8-17. doi:10.1016/j.jallcom.2017.05.334 |
es_ES |
dc.description.references |
Messaoudi, O., Makhlouf, H., Souissi, A., Ben assaker I., Amiri, G., Bardaoui, A., … Chtourou, R. (2015). Synthesis and characterization of ZnO/Cu2O core–shell nanowires grown by two-step electrodeposition method. Applied Surface Science, 343, 148-152. doi:10.1016/j.apsusc.2015.03.045 |
es_ES |
dc.description.references |
Jiang, X., Lin, Q., Zhang, M., He, G., & Sun, Z. (2015). Microstructure, optical properties, and catalytic performance of Cu2O-modified ZnO nanorods prepared by electrodeposition. Nanoscale Research Letters, 10(1). doi:10.1186/s11671-015-0755-0 |
es_ES |
dc.description.references |
Hussain, S., Cao, C., Nabi, G., Khan, W. S., Usman, Z., & Mahmood, T. (2011). Effect of electrodeposition and annealing of ZnO on optical and photovoltaic properties of the p-Cu2O/n-ZnO solar cells. Electrochimica Acta, 56(24), 8342-8346. doi:10.1016/j.electacta.2011.07.017 |
es_ES |
dc.description.references |
Kang, D., Lee, D., & Choi, K.-S. (2016). Electrochemical Synthesis of Highly Oriented, Transparent, and Pinhole-Free ZnO and Al-Doped ZnO Films and Their Use in Heterojunction Solar Cells. Langmuir, 32(41), 10459-10466. doi:10.1021/acs.langmuir.6b01902 |
es_ES |
dc.description.references |
Kaur, J., Bethge, O., Wibowo, R. A., Bansal, N., Bauch, M., Hamid, R., … Dimopoulos, T. (2017). All-oxide solar cells based on electrodeposited Cu2O absorber and atomic layer deposited ZnMgO on precious-metal-free electrode. Solar Energy Materials and Solar Cells, 161, 449-459. doi:10.1016/j.solmat.2016.12.017 |
es_ES |
dc.description.references |
Niu, W., Zhou, M., Ye, Z., & Zhu, L. (2016). Photoresponse enhancement of Cu2O solar cell with sulfur-doped ZnO buffer layer to mediate the interfacial band alignment. Solar Energy Materials and Solar Cells, 144, 717-723. doi:10.1016/j.solmat.2015.10.013 |
es_ES |
dc.description.references |
Fujimoto, K., Oku, T., & Akiyama, T. (2013). Fabrication and Characterization of ZnO/Cu2O Solar Cells Prepared by Electrodeposition. Applied Physics Express, 6(8), 086503. doi:10.7567/apex.6.086503 |
es_ES |
dc.description.references |
Bai, Z., Liu, J., Liu, F., & Zhang, Y. (2017). Enhanced photoresponse performance of self-powered UV–visible photodetectors based on ZnO/Cu2O/electrolyte heterojunctions via graphene incorporation. Journal of Alloys and Compounds, 726, 803-809. doi:10.1016/j.jallcom.2017.08.035 |
es_ES |
dc.description.references |
Ke, N. H., Trinh, L. T. T., Phung, P. K., Loan, P. T. K., Tuan, D. A., Truong, N. H., … Hung, L. V. T. (2016). Changing the thickness of two layers: i-ZnO nanorods, p-Cu2O and its influence on the carriers transport mechanism of the p-Cu2O/i-ZnO nanorods/n-IGZO heterojunction. SpringerPlus, 5(1). doi:10.1186/s40064-016-2468-y |
es_ES |
dc.description.references |
Guo, D., & Ju, Y. (2016). Preparation of Cu2O/ZnO p-n Junction by Thermal Oxidation Method for Solar Cell Application. Materials Today: Proceedings, 3(2), 350-353. doi:10.1016/j.matpr.2016.01.019 |
es_ES |
dc.description.references |
Jeong, S. S., Mittiga, A., Salza, E., Masci, A., & Passerini, S. (2008). Electrodeposited ZnO/Cu2O heterojunction solar cells. Electrochimica Acta, 53(5), 2226-2231. doi:10.1016/j.electacta.2007.09.030 |
es_ES |
dc.description.references |
Wu, X., Liu, J., Huang, P., Huang, Z., Lai, F., Chen, G., … Qu, Y. (2017). Engineering crystal orientation of p-Cu2O on heterojunction solar cells. Surface Engineering, 33(7), 542-547. doi:10.1080/02670844.2017.1288342 |
es_ES |
dc.description.references |
Rosas-Laverde, N. M., Pruna, A., Busquets-Mataix, D., Marí, B., Cembrero, J., Salas Vicente, F., & Orozco-Messana, J. (2018). Improving the properties of Cu2O/ZnO heterojunction for photovoltaic application by graphene oxide. Ceramics International, 44(18), 23045-23051. doi:10.1016/j.ceramint.2018.09.107 |
es_ES |
dc.description.references |
Lin, Y., Li, X., Xie, D., Feng, T., Chen, Y., Song, R., … Zhu, H. (2013). Graphene/semiconductor heterojunction solar cells with modulated antireflection and graphene work function. Energy Environ. Sci., 6(1), 108-115. doi:10.1039/c2ee23538b |
es_ES |
dc.description.references |
Pruna, A., Reyes-Tolosa, M. D., Pullini, D., Hernandez-Fenollosa, M. A., & Busquets-Mataix, D. (2015). Seed-free electrodeposition of ZnO bi-pods on electrophoretically-reduced graphene oxide for optoelectronic applications. Ceramics International, 41(2), 2381-2388. doi:10.1016/j.ceramint.2014.10.052 |
es_ES |
dc.description.references |
Li, D., Cui, J., Li, H., Huang, D., Wang, M., & Shen, Y. (2016). Graphene oxide modified hole transport layer for CH3NH3PbI3 planar heterojunction solar cells. Solar Energy, 131, 176-182. doi:10.1016/j.solener.2016.02.049 |
es_ES |
dc.description.references |
Riveros, G., Ramírez, D., Tello, A., Schrebler, R., Henríquez, R., & Gómez, H. (2012). Electrodeposition of ZnO from DMSO solution: influence of anion nature and its concentration in the nucleation and growth mechanisms. Journal of the Brazilian Chemical Society, 23(3), 505-512. doi:10.1590/s0103-50532012000300018 |
es_ES |
dc.description.references |
Yilmaz, C., & Unal, U. (2017). Hydrothermal–electrochemical growth of heterogeneous ZnO: Co films. Applied Nanoscience, 7(7), 343-354. doi:10.1007/s13204-017-0579-6 |
es_ES |
dc.description.references |
GÓMEZ, H., CANTILLANA, S., F.A., C., ALTAMIRANO, H., & BURGOS, A. (2014). TEMPLATE ASSISTED ELECTRODEPOSITION OF HIGHLY ORIENTED ZnO NANOWIRE ARRAYS AND THEIR INTEGRATION IN DYE SENSITIZED SOLAR CELLS. Journal of the Chilean Chemical Society, 59(2), 2447-2450. doi:10.4067/s0717-97072014000200010 |
es_ES |
dc.description.references |
Cembrero, J., Perales, M., Mollar, M., & Marí, B. (2003). Obtención de columnas de ZnO. Variables a controlar (I). Boletín de la Sociedad Española de Cerámica y Vidrio, 42(6), 379-387. doi:10.3989/cyv.2003.v42.i6.626 |
es_ES |
dc.description.references |
Oliveira, F. F., Proenca, M. P., Araújo, J. P., & Ventura, J. (2016). Electrodeposition of ZnO thin films on conducting flexible substrates. Journal of Materials Science, 51(12), 5589-5597. doi:10.1007/s10853-016-9850-6 |
es_ES |
dc.description.references |
Londhe, P. U., & Chaure, N. B. (2017). Effect of pH on the properties of electrochemically prepared ZnO thin films. Materials Science in Semiconductor Processing, 60, 5-15. doi:10.1016/j.mssp.2016.12.005 |
es_ES |
dc.description.references |
Mezine, Z., Kadri, A., Hamadou, L., Benbrahim, N., & Chaouchi, A. (2018). Electrodeposition of copper oxides (CuxOy) from acetate bath. Journal of Electroanalytical Chemistry, 817, 36-47. doi:10.1016/j.jelechem.2018.03.055 |
es_ES |
dc.description.references |
Perng, D.-C., Chen, J.-W., Kao, T.-T., & Chang, R.-P. (2013). Cu 2 O growth characteristics on an array of ZnO nanorods for the nano-structured solar cells. Surface and Coatings Technology, 231, 261-266. doi:10.1016/j.surfcoat.2012.05.054 |
es_ES |
dc.description.references |
Venkatesan, A., & Kannan, E. S. (2017). Highly ordered copper oxide (Cu 2 O) nanopillar arrays using template assisted electrodeposition technique and their temperature dependent electrical characteristics. Current Applied Physics, 17(5), 806-812. doi:10.1016/j.cap.2017.03.005 |
es_ES |
dc.description.references |
Scharifker, B., & Hills, G. (1983). Theoretical and experimental studies of multiple nucleation. Electrochimica Acta, 28(7), 879-889. doi:10.1016/0013-4686(83)85163-9 |
es_ES |
dc.description.references |
Lahmar, H., Setifi, F., Azizi, A., Schmerber, G., & Dinia, A. (2017). On the electrochemical synthesis and characterization of p-Cu2O/n-ZnO heterojunction. Journal of Alloys and Compounds, 718, 36-45. doi:10.1016/j.jallcom.2017.05.054 |
es_ES |
dc.description.references |
Septina, W., Ikeda, S., Khan, M. A., Hirai, T., Harada, T., Matsumura, M., & Peter, L. M. (2011). Potentiostatic electrodeposition of cuprous oxide thin films for photovoltaic applications. Electrochimica Acta, 56(13), 4882-4888. doi:10.1016/j.electacta.2011.02.075 |
es_ES |
dc.description.references |
Shi, B., Liu, B., Luo, J., Li, Y., Zheng, C., Yao, X., … Zhang, X. (2017). Enhanced light absorption of thin perovskite solar cells using textured substrates. Solar Energy Materials and Solar Cells, 168, 214-220. doi:10.1016/j.solmat.2017.04.038 |
es_ES |
dc.description.references |
Pullini, D., Pruna, A., Zanin, S., & Mataix, D. B. (2011). High-Efficiency Electrodeposition of Large Scale ZnO Nanorod Arrays for Thin Transparent Electrodes. Journal of The Electrochemical Society, 159(2), E45-E51. doi:10.1149/2.093202jes |
es_ES |
dc.description.references |
Pruna, A., Shao, Q., Kamruzzaman, M., Zapien, J. A., & Ruotolo, A. (2016). Optimized properties of ZnO nanorod arrays grown on graphene oxide seed layer by combined chemical and electrochemical approach. Ceramics International, 42(15), 17192-17201. doi:10.1016/j.ceramint.2016.08.011 |
es_ES |
dc.description.references |
Manjón, F. J., Syassen, K., & Lauck, R. (2002). Effect of Pressure on Phonon Modes in Wurtzite Zinc Oxide. High Pressure Research, 22(2), 299-304. doi:10.1080/08957950212798 |
es_ES |
dc.description.references |
Marí, B., Manjón, F. J., Mollar, M., Cembrero, J., & Gómez, R. (2006). Photoluminescence of thermal-annealed nanocolumnar ZnO thin films grown by electrodeposition. Applied Surface Science, 252(8), 2826-2831. doi:10.1016/j.apsusc.2005.04.024 |
es_ES |
dc.description.references |
Kundu, S. (2014). A facile route for the formation of shape-selective ZnO nanoarchitectures with superior photo-catalytic activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 446, 199-212. doi:10.1016/j.colsurfa.2013.12.035 |
es_ES |
dc.description.references |
Pruna, A., Wu, Z., Zapien, J. A., Li, Y. Y., & Ruotolo, A. (2018). Enhanced photocatalytic performance of ZnO nanostructures by electrochemical hybridization with graphene oxide. Applied Surface Science, 441, 936-944. doi:10.1016/j.apsusc.2018.02.117 |
es_ES |
dc.description.references |
Pan, X., Yang, M.-Q., & Xu, Y.-J. (2014). Morphology control, defect engineering and photoactivity tuning of ZnO crystals by graphene oxide – a unique 2D macromolecular surfactant. Physical Chemistry Chemical Physics, 16(12), 5589. doi:10.1039/c3cp55038a |
es_ES |
dc.description.references |
Manjón, F. J., Marí, B., Serrano, J., & Romero, A. H. (2005). Silent Raman modes in zinc oxide and related nitrides. Journal of Applied Physics, 97(5), 053516. doi:10.1063/1.1856222 |
es_ES |