- -

Performance of graphene oxide-modified electrodeposited ZnO/Cu2O heterojunction solar cells

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Performance of graphene oxide-modified electrodeposited ZnO/Cu2O heterojunction solar cells

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rosas-Laverde, Nelly Maria es_ES
dc.contributor.author Pruna, Alina Iuliana es_ES
dc.contributor.author Cembrero Gil, Jesús es_ES
dc.contributor.author Orozco-Messana, Javier es_ES
dc.contributor.author Manjón, Francisco-Javier es_ES
dc.date.accessioned 2021-07-14T03:31:32Z
dc.date.available 2021-07-14T03:31:32Z
dc.date.issued 2019-12 es_ES
dc.identifier.issn 0366-3175 es_ES
dc.identifier.uri http://hdl.handle.net/10251/169187
dc.description.abstract [EN] We report the fabrication of ZnO/Cu2O heterojunction solar cells by means of the electrodeposition technique. The effect of electrolyte medium for the ZnO deposition, annealing treatment and interface modification with graphene oxide (GO) layer on the photoelectrical properties was analyzed. The electrochemical results indicated a markedly dependent Cu2O film electrodeposition on the GO-modified ZnO films. The modification of ZnO/Cu2O interface with GO nanosheets and annealing treatment results in improved interface properties, varying morphology and defects in ZnO lattice that further lead to enhanced performance of the proposed heterojunction solar cells. While the obtained results indicate that the properties of GO coating need to be tailored for improved performance, a synergetic effect of the GO addition and annealing treatment on the photoelectric properties of the electrodeposited heterojunction is achieved. (C) 2019 SECV. Published by Elsevier Espana, S.L.U. es_ES
dc.description.abstract [ES] Se presenta la fabricación de celdas solares de heterounión de ZnO/Cu2O obtenidas mediante la técnica de electrodeposición. Se analizó el efecto del electrolito utilizado para la deposición de ZnO, el tratamiento térmico aplicado y la modificación de la interfaz con una capa de óxido de grafeno (GO) sobre las propiedades fotoeléctricas. Los resultados electroquímicos indicaron que existe una marcada dependencia de electrodeposición de capa de Cu2O sobre las películas de ZnO modificadas con GO. La modificación de la interfaz ZnO/Cu2O con nanohojas de GO y el tratamiento térmico dan como resultado mejoras en las propiedades de la interfaz, una morfología variable y defectos en la red de ZnO que conducen a un mejor rendimiento de las celdas solares de heterounión propuestas. Si bien los resultados obtenidos indican que las propiedades del recubrimiento de GO deben adaptarse para mejorar el rendimiento, se logra un efecto sinérgico del tratamiento de adición y térmico de GO aplicados sobre las propiedades fotoeléctricas de la heterounión electrodepositada. es_ES
dc.description.sponsorship Financial support from Escuela Politécnica Nacional (project number PIMI 15-09), Secretaría de Educación Superior, Ciencia, Tecnología e Innovación (SENESCYT) of Ecuador, Romanian National Authority for Scientific Research and Innovation CNCS ¿ UEFISCDI (project number PN-III-P1-1.1-TE-2016-1544), Spanish government MINECO (projects MAT2016-75586-C4-2-P and MAT2015-71070-REDC) and from Generalitat Valenciana (project PROMETEO 2018/123 ¿ EFIMAT) is gratefully acknowledged. In addition, authors would like to thank to the Microscopy Service of UPV and Dr. David Busquets-Mataix for useful advice. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Boletín de la Sociedad Española de Cerámica y Vidrio es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Electrochemical deposition es_ES
dc.subject ZnO es_ES
dc.subject Cu2O es_ES
dc.subject Solar cells es_ES
dc.subject Deposición electroquímica es_ES
dc.subject Celdas solares es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Performance of graphene oxide-modified electrodeposited ZnO/Cu2O heterojunction solar cells es_ES
dc.title.alternative Rendimiento de las celdas solares de heterounión ZnO/Cu2O modificadas con óxido de grafeno es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.bsecv.2019.06.002 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EPN//PIMI 15-09/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CNCS//PN-III-P1-1.1-TE-2016-1544/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F123/ES/Materiales avanzados para el uso eficiente de la energia (EFIMAT)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2016-75586-C4-2-P/ES/COMPUESTOS ABO3 Y A2X3 EN CONDICIONES EXTREMAS DE PRESION Y TEMPERATURA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2015-71070-REDC/ES/MATERIA A ALTA PRESION. MALTA-CONSOLIDER TEAM/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials es_ES
dc.description.bibliographicCitation Rosas-Laverde, NM.; Pruna, AI.; Cembrero Gil, J.; Orozco-Messana, J.; Manjón, F. (2019). Performance of graphene oxide-modified electrodeposited ZnO/Cu2O heterojunction solar cells. Boletín de la Sociedad Española de Cerámica y Vidrio. 58(6):263-273. https://doi.org/10.1016/j.bsecv.2019.06.002 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.bsecv.2019.06.002 es_ES
dc.description.upvformatpinicio 263 es_ES
dc.description.upvformatpfin 273 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 58 es_ES
dc.description.issue 6 es_ES
dc.relation.pasarela S\398421 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder National Research Council, Rumanía es_ES
dc.contributor.funder Escuela Politécnica Nacional, Ecuador es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Secretaría de Educación Superior, Ciencia, Tecnología e Innovación, Ecuador es_ES
dc.description.references Kathalingam, A., Vikraman, D., Kim, H.-S., & Park, H. J. (2017). Facile fabrication of n-ZnO nanorods/p-Cu 2 O heterojunction and its photodiode property. Optical Materials, 66, 122-130. doi:10.1016/j.optmat.2017.01.051 es_ES
dc.description.references Panigrahi, S., Nunes, D., Calmeiro, T., Kardarian, K., Martins, R., & Fortunato, E. (2017). Oxide-Based Solar Cell: Impact of Layer Thicknesses on the Device Performance. ACS Combinatorial Science, 19(2), 113-120. doi:10.1021/acscombsci.6b00154 es_ES
dc.description.references Makhlouf, H., Weber, M., Messaoudi, O., Tingry, S., Moret, M., Briot, O., … Bechelany, M. (2017). Study of Cu 2 O\ZnO nanowires heterojunction designed by combining electrodeposition and atomic layer deposition. Applied Surface Science, 426, 301-306. doi:10.1016/j.apsusc.2017.07.130 es_ES
dc.description.references Cheng, K., Li, Q., Meng, J., Han, X., Wu, Y., Wang, S., … Du, Z. (2013). Interface engineering for efficient charge collection in Cu2O/ZnO heterojunction solar cells with ordered ZnO cavity-like nanopatterns. Solar Energy Materials and Solar Cells, 116, 120-125. doi:10.1016/j.solmat.2013.04.021 es_ES
dc.description.references Perng, D.-C., Hong, M.-H., Chen, K.-H., & Chen, K.-H. (2017). Enhancement of short-circuit current density in Cu2O/ZnO heterojunction solar cells. Journal of Alloys and Compounds, 695, 549-554. doi:10.1016/j.jallcom.2016.11.119 es_ES
dc.description.references Zamzuri, M., Sasano, J., Mohamad, F. B., & Izaki, M. (2015). Substrate type < 111 >-Cu2O/<0001 >-ZnO photovoltaic device prepared by photo-assisted electrodeposition. Thin Solid Films, 595, 136-141. doi:10.1016/j.tsf.2015.10.054 es_ES
dc.description.references Zhou, X., Xie, Y., Ma, J., Mi, H., Yang, J., Cheng, J., & Hoang, T. K. A. (2017). Synthesis of hierarchical structure cuprous oxide by a novel two-step hydrothermal method and the effect of its addition on the photovoltaic properties of ZnO-based dye-sensitized solar cells. Journal of Alloys and Compounds, 721, 8-17. doi:10.1016/j.jallcom.2017.05.334 es_ES
dc.description.references Messaoudi, O., Makhlouf, H., Souissi, A., Ben assaker I., Amiri, G., Bardaoui, A., … Chtourou, R. (2015). Synthesis and characterization of ZnO/Cu2O core–shell nanowires grown by two-step electrodeposition method. Applied Surface Science, 343, 148-152. doi:10.1016/j.apsusc.2015.03.045 es_ES
dc.description.references Jiang, X., Lin, Q., Zhang, M., He, G., & Sun, Z. (2015). Microstructure, optical properties, and catalytic performance of Cu2O-modified ZnO nanorods prepared by electrodeposition. Nanoscale Research Letters, 10(1). doi:10.1186/s11671-015-0755-0 es_ES
dc.description.references Hussain, S., Cao, C., Nabi, G., Khan, W. S., Usman, Z., & Mahmood, T. (2011). Effect of electrodeposition and annealing of ZnO on optical and photovoltaic properties of the p-Cu2O/n-ZnO solar cells. Electrochimica Acta, 56(24), 8342-8346. doi:10.1016/j.electacta.2011.07.017 es_ES
dc.description.references Kang, D., Lee, D., & Choi, K.-S. (2016). Electrochemical Synthesis of Highly Oriented, Transparent, and Pinhole-Free ZnO and Al-Doped ZnO Films and Their Use in Heterojunction Solar Cells. Langmuir, 32(41), 10459-10466. doi:10.1021/acs.langmuir.6b01902 es_ES
dc.description.references Kaur, J., Bethge, O., Wibowo, R. A., Bansal, N., Bauch, M., Hamid, R., … Dimopoulos, T. (2017). All-oxide solar cells based on electrodeposited Cu2O absorber and atomic layer deposited ZnMgO on precious-metal-free electrode. Solar Energy Materials and Solar Cells, 161, 449-459. doi:10.1016/j.solmat.2016.12.017 es_ES
dc.description.references Niu, W., Zhou, M., Ye, Z., & Zhu, L. (2016). Photoresponse enhancement of Cu2O solar cell with sulfur-doped ZnO buffer layer to mediate the interfacial band alignment. Solar Energy Materials and Solar Cells, 144, 717-723. doi:10.1016/j.solmat.2015.10.013 es_ES
dc.description.references Fujimoto, K., Oku, T., & Akiyama, T. (2013). Fabrication and Characterization of ZnO/Cu2O Solar Cells Prepared by Electrodeposition. Applied Physics Express, 6(8), 086503. doi:10.7567/apex.6.086503 es_ES
dc.description.references Bai, Z., Liu, J., Liu, F., & Zhang, Y. (2017). Enhanced photoresponse performance of self-powered UV–visible photodetectors based on ZnO/Cu2O/electrolyte heterojunctions via graphene incorporation. Journal of Alloys and Compounds, 726, 803-809. doi:10.1016/j.jallcom.2017.08.035 es_ES
dc.description.references Ke, N. H., Trinh, L. T. T., Phung, P. K., Loan, P. T. K., Tuan, D. A., Truong, N. H., … Hung, L. V. T. (2016). Changing the thickness of two layers: i-ZnO nanorods, p-Cu2O and its influence on the carriers transport mechanism of the p-Cu2O/i-ZnO nanorods/n-IGZO heterojunction. SpringerPlus, 5(1). doi:10.1186/s40064-016-2468-y es_ES
dc.description.references Guo, D., & Ju, Y. (2016). Preparation of Cu2O/ZnO p-n Junction by Thermal Oxidation Method for Solar Cell Application. Materials Today: Proceedings, 3(2), 350-353. doi:10.1016/j.matpr.2016.01.019 es_ES
dc.description.references Jeong, S. S., Mittiga, A., Salza, E., Masci, A., & Passerini, S. (2008). Electrodeposited ZnO/Cu2O heterojunction solar cells. Electrochimica Acta, 53(5), 2226-2231. doi:10.1016/j.electacta.2007.09.030 es_ES
dc.description.references Wu, X., Liu, J., Huang, P., Huang, Z., Lai, F., Chen, G., … Qu, Y. (2017). Engineering crystal orientation of p-Cu2O on heterojunction solar cells. Surface Engineering, 33(7), 542-547. doi:10.1080/02670844.2017.1288342 es_ES
dc.description.references Rosas-Laverde, N. M., Pruna, A., Busquets-Mataix, D., Marí, B., Cembrero, J., Salas Vicente, F., & Orozco-Messana, J. (2018). Improving the properties of Cu2O/ZnO heterojunction for photovoltaic application by graphene oxide. Ceramics International, 44(18), 23045-23051. doi:10.1016/j.ceramint.2018.09.107 es_ES
dc.description.references Lin, Y., Li, X., Xie, D., Feng, T., Chen, Y., Song, R., … Zhu, H. (2013). Graphene/semiconductor heterojunction solar cells with modulated antireflection and graphene work function. Energy Environ. Sci., 6(1), 108-115. doi:10.1039/c2ee23538b es_ES
dc.description.references Pruna, A., Reyes-Tolosa, M. D., Pullini, D., Hernandez-Fenollosa, M. A., & Busquets-Mataix, D. (2015). Seed-free electrodeposition of ZnO bi-pods on electrophoretically-reduced graphene oxide for optoelectronic applications. Ceramics International, 41(2), 2381-2388. doi:10.1016/j.ceramint.2014.10.052 es_ES
dc.description.references Li, D., Cui, J., Li, H., Huang, D., Wang, M., & Shen, Y. (2016). Graphene oxide modified hole transport layer for CH3NH3PbI3 planar heterojunction solar cells. Solar Energy, 131, 176-182. doi:10.1016/j.solener.2016.02.049 es_ES
dc.description.references Riveros, G., Ramírez, D., Tello, A., Schrebler, R., Henríquez, R., & Gómez, H. (2012). Electrodeposition of ZnO from DMSO solution: influence of anion nature and its concentration in the nucleation and growth mechanisms. Journal of the Brazilian Chemical Society, 23(3), 505-512. doi:10.1590/s0103-50532012000300018 es_ES
dc.description.references Yilmaz, C., & Unal, U. (2017). Hydrothermal–electrochemical growth of heterogeneous ZnO: Co films. Applied Nanoscience, 7(7), 343-354. doi:10.1007/s13204-017-0579-6 es_ES
dc.description.references GÓMEZ, H., CANTILLANA, S., F.A., C., ALTAMIRANO, H., & BURGOS, A. (2014). TEMPLATE ASSISTED ELECTRODEPOSITION OF HIGHLY ORIENTED ZnO NANOWIRE ARRAYS AND THEIR INTEGRATION IN DYE SENSITIZED SOLAR CELLS. Journal of the Chilean Chemical Society, 59(2), 2447-2450. doi:10.4067/s0717-97072014000200010 es_ES
dc.description.references Cembrero, J., Perales, M., Mollar, M., & Marí, B. (2003). Obtención de columnas de ZnO. Variables a controlar (I). Boletín de la Sociedad Española de Cerámica y Vidrio, 42(6), 379-387. doi:10.3989/cyv.2003.v42.i6.626 es_ES
dc.description.references Oliveira, F. F., Proenca, M. P., Araújo, J. P., & Ventura, J. (2016). Electrodeposition of ZnO thin films on conducting flexible substrates. Journal of Materials Science, 51(12), 5589-5597. doi:10.1007/s10853-016-9850-6 es_ES
dc.description.references Londhe, P. U., & Chaure, N. B. (2017). Effect of pH on the properties of electrochemically prepared ZnO thin films. Materials Science in Semiconductor Processing, 60, 5-15. doi:10.1016/j.mssp.2016.12.005 es_ES
dc.description.references Mezine, Z., Kadri, A., Hamadou, L., Benbrahim, N., & Chaouchi, A. (2018). Electrodeposition of copper oxides (CuxOy) from acetate bath. Journal of Electroanalytical Chemistry, 817, 36-47. doi:10.1016/j.jelechem.2018.03.055 es_ES
dc.description.references Perng, D.-C., Chen, J.-W., Kao, T.-T., & Chang, R.-P. (2013). Cu 2 O growth characteristics on an array of ZnO nanorods for the nano-structured solar cells. Surface and Coatings Technology, 231, 261-266. doi:10.1016/j.surfcoat.2012.05.054 es_ES
dc.description.references Venkatesan, A., & Kannan, E. S. (2017). Highly ordered copper oxide (Cu 2 O) nanopillar arrays using template assisted electrodeposition technique and their temperature dependent electrical characteristics. Current Applied Physics, 17(5), 806-812. doi:10.1016/j.cap.2017.03.005 es_ES
dc.description.references Scharifker, B., & Hills, G. (1983). Theoretical and experimental studies of multiple nucleation. Electrochimica Acta, 28(7), 879-889. doi:10.1016/0013-4686(83)85163-9 es_ES
dc.description.references Lahmar, H., Setifi, F., Azizi, A., Schmerber, G., & Dinia, A. (2017). On the electrochemical synthesis and characterization of p-Cu2O/n-ZnO heterojunction. Journal of Alloys and Compounds, 718, 36-45. doi:10.1016/j.jallcom.2017.05.054 es_ES
dc.description.references Septina, W., Ikeda, S., Khan, M. A., Hirai, T., Harada, T., Matsumura, M., & Peter, L. M. (2011). Potentiostatic electrodeposition of cuprous oxide thin films for photovoltaic applications. Electrochimica Acta, 56(13), 4882-4888. doi:10.1016/j.electacta.2011.02.075 es_ES
dc.description.references Shi, B., Liu, B., Luo, J., Li, Y., Zheng, C., Yao, X., … Zhang, X. (2017). Enhanced light absorption of thin perovskite solar cells using textured substrates. Solar Energy Materials and Solar Cells, 168, 214-220. doi:10.1016/j.solmat.2017.04.038 es_ES
dc.description.references Pullini, D., Pruna, A., Zanin, S., & Mataix, D. B. (2011). High-Efficiency Electrodeposition of Large Scale ZnO Nanorod Arrays for Thin Transparent Electrodes. Journal of The Electrochemical Society, 159(2), E45-E51. doi:10.1149/2.093202jes es_ES
dc.description.references Pruna, A., Shao, Q., Kamruzzaman, M., Zapien, J. A., & Ruotolo, A. (2016). Optimized properties of ZnO nanorod arrays grown on graphene oxide seed layer by combined chemical and electrochemical approach. Ceramics International, 42(15), 17192-17201. doi:10.1016/j.ceramint.2016.08.011 es_ES
dc.description.references Manjón, F. J., Syassen, K., & Lauck, R. (2002). Effect of Pressure on Phonon Modes in Wurtzite Zinc Oxide. High Pressure Research, 22(2), 299-304. doi:10.1080/08957950212798 es_ES
dc.description.references Marí, B., Manjón, F. J., Mollar, M., Cembrero, J., & Gómez, R. (2006). Photoluminescence of thermal-annealed nanocolumnar ZnO thin films grown by electrodeposition. Applied Surface Science, 252(8), 2826-2831. doi:10.1016/j.apsusc.2005.04.024 es_ES
dc.description.references Kundu, S. (2014). A facile route for the formation of shape-selective ZnO nanoarchitectures with superior photo-catalytic activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 446, 199-212. doi:10.1016/j.colsurfa.2013.12.035 es_ES
dc.description.references Pruna, A., Wu, Z., Zapien, J. A., Li, Y. Y., & Ruotolo, A. (2018). Enhanced photocatalytic performance of ZnO nanostructures by electrochemical hybridization with graphene oxide. Applied Surface Science, 441, 936-944. doi:10.1016/j.apsusc.2018.02.117 es_ES
dc.description.references Pan, X., Yang, M.-Q., & Xu, Y.-J. (2014). Morphology control, defect engineering and photoactivity tuning of ZnO crystals by graphene oxide – a unique 2D macromolecular surfactant. Physical Chemistry Chemical Physics, 16(12), 5589. doi:10.1039/c3cp55038a es_ES
dc.description.references Manjón, F. J., Marí, B., Serrano, J., & Romero, A. H. (2005). Silent Raman modes in zinc oxide and related nitrides. Journal of Applied Physics, 97(5), 053516. doi:10.1063/1.1856222 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem