Kathalingam, A., Vikraman, D., Kim, H.-S., & Park, H. J. (2017). Facile fabrication of n-ZnO nanorods/p-Cu 2 O heterojunction and its photodiode property. Optical Materials, 66, 122-130. doi:10.1016/j.optmat.2017.01.051
Panigrahi, S., Nunes, D., Calmeiro, T., Kardarian, K., Martins, R., & Fortunato, E. (2017). Oxide-Based Solar Cell: Impact of Layer Thicknesses on the Device Performance. ACS Combinatorial Science, 19(2), 113-120. doi:10.1021/acscombsci.6b00154
Makhlouf, H., Weber, M., Messaoudi, O., Tingry, S., Moret, M., Briot, O., … Bechelany, M. (2017). Study of Cu 2 O\ZnO nanowires heterojunction designed by combining electrodeposition and atomic layer deposition. Applied Surface Science, 426, 301-306. doi:10.1016/j.apsusc.2017.07.130
[+]
Kathalingam, A., Vikraman, D., Kim, H.-S., & Park, H. J. (2017). Facile fabrication of n-ZnO nanorods/p-Cu 2 O heterojunction and its photodiode property. Optical Materials, 66, 122-130. doi:10.1016/j.optmat.2017.01.051
Panigrahi, S., Nunes, D., Calmeiro, T., Kardarian, K., Martins, R., & Fortunato, E. (2017). Oxide-Based Solar Cell: Impact of Layer Thicknesses on the Device Performance. ACS Combinatorial Science, 19(2), 113-120. doi:10.1021/acscombsci.6b00154
Makhlouf, H., Weber, M., Messaoudi, O., Tingry, S., Moret, M., Briot, O., … Bechelany, M. (2017). Study of Cu 2 O\ZnO nanowires heterojunction designed by combining electrodeposition and atomic layer deposition. Applied Surface Science, 426, 301-306. doi:10.1016/j.apsusc.2017.07.130
Cheng, K., Li, Q., Meng, J., Han, X., Wu, Y., Wang, S., … Du, Z. (2013). Interface engineering for efficient charge collection in Cu2O/ZnO heterojunction solar cells with ordered ZnO cavity-like nanopatterns. Solar Energy Materials and Solar Cells, 116, 120-125. doi:10.1016/j.solmat.2013.04.021
Perng, D.-C., Hong, M.-H., Chen, K.-H., & Chen, K.-H. (2017). Enhancement of short-circuit current density in Cu2O/ZnO heterojunction solar cells. Journal of Alloys and Compounds, 695, 549-554. doi:10.1016/j.jallcom.2016.11.119
Zamzuri, M., Sasano, J., Mohamad, F. B., & Izaki, M. (2015). Substrate type < 111 >-Cu2O/<0001 >-ZnO photovoltaic device prepared by photo-assisted electrodeposition. Thin Solid Films, 595, 136-141. doi:10.1016/j.tsf.2015.10.054
Zhou, X., Xie, Y., Ma, J., Mi, H., Yang, J., Cheng, J., & Hoang, T. K. A. (2017). Synthesis of hierarchical structure cuprous oxide by a novel two-step hydrothermal method and the effect of its addition on the photovoltaic properties of ZnO-based dye-sensitized solar cells. Journal of Alloys and Compounds, 721, 8-17. doi:10.1016/j.jallcom.2017.05.334
Messaoudi, O., Makhlouf, H., Souissi, A., Ben assaker I., Amiri, G., Bardaoui, A., … Chtourou, R. (2015). Synthesis and characterization of ZnO/Cu2O core–shell nanowires grown by two-step electrodeposition method. Applied Surface Science, 343, 148-152. doi:10.1016/j.apsusc.2015.03.045
Jiang, X., Lin, Q., Zhang, M., He, G., & Sun, Z. (2015). Microstructure, optical properties, and catalytic performance of Cu2O-modified ZnO nanorods prepared by electrodeposition. Nanoscale Research Letters, 10(1). doi:10.1186/s11671-015-0755-0
Hussain, S., Cao, C., Nabi, G., Khan, W. S., Usman, Z., & Mahmood, T. (2011). Effect of electrodeposition and annealing of ZnO on optical and photovoltaic properties of the p-Cu2O/n-ZnO solar cells. Electrochimica Acta, 56(24), 8342-8346. doi:10.1016/j.electacta.2011.07.017
Kang, D., Lee, D., & Choi, K.-S. (2016). Electrochemical Synthesis of Highly Oriented, Transparent, and Pinhole-Free ZnO and Al-Doped ZnO Films and Their Use in Heterojunction Solar Cells. Langmuir, 32(41), 10459-10466. doi:10.1021/acs.langmuir.6b01902
Kaur, J., Bethge, O., Wibowo, R. A., Bansal, N., Bauch, M., Hamid, R., … Dimopoulos, T. (2017). All-oxide solar cells based on electrodeposited Cu2O absorber and atomic layer deposited ZnMgO on precious-metal-free electrode. Solar Energy Materials and Solar Cells, 161, 449-459. doi:10.1016/j.solmat.2016.12.017
Niu, W., Zhou, M., Ye, Z., & Zhu, L. (2016). Photoresponse enhancement of Cu2O solar cell with sulfur-doped ZnO buffer layer to mediate the interfacial band alignment. Solar Energy Materials and Solar Cells, 144, 717-723. doi:10.1016/j.solmat.2015.10.013
Fujimoto, K., Oku, T., & Akiyama, T. (2013). Fabrication and Characterization of ZnO/Cu2O Solar Cells Prepared by Electrodeposition. Applied Physics Express, 6(8), 086503. doi:10.7567/apex.6.086503
Bai, Z., Liu, J., Liu, F., & Zhang, Y. (2017). Enhanced photoresponse performance of self-powered UV–visible photodetectors based on ZnO/Cu2O/electrolyte heterojunctions via graphene incorporation. Journal of Alloys and Compounds, 726, 803-809. doi:10.1016/j.jallcom.2017.08.035
Ke, N. H., Trinh, L. T. T., Phung, P. K., Loan, P. T. K., Tuan, D. A., Truong, N. H., … Hung, L. V. T. (2016). Changing the thickness of two layers: i-ZnO nanorods, p-Cu2O and its influence on the carriers transport mechanism of the p-Cu2O/i-ZnO nanorods/n-IGZO heterojunction. SpringerPlus, 5(1). doi:10.1186/s40064-016-2468-y
Guo, D., & Ju, Y. (2016). Preparation of Cu2O/ZnO p-n Junction by Thermal Oxidation Method for Solar Cell Application. Materials Today: Proceedings, 3(2), 350-353. doi:10.1016/j.matpr.2016.01.019
Jeong, S. S., Mittiga, A., Salza, E., Masci, A., & Passerini, S. (2008). Electrodeposited ZnO/Cu2O heterojunction solar cells. Electrochimica Acta, 53(5), 2226-2231. doi:10.1016/j.electacta.2007.09.030
Wu, X., Liu, J., Huang, P., Huang, Z., Lai, F., Chen, G., … Qu, Y. (2017). Engineering crystal orientation of p-Cu2O on heterojunction solar cells. Surface Engineering, 33(7), 542-547. doi:10.1080/02670844.2017.1288342
Rosas-Laverde, N. M., Pruna, A., Busquets-Mataix, D., Marí, B., Cembrero, J., Salas Vicente, F., & Orozco-Messana, J. (2018). Improving the properties of Cu2O/ZnO heterojunction for photovoltaic application by graphene oxide. Ceramics International, 44(18), 23045-23051. doi:10.1016/j.ceramint.2018.09.107
Lin, Y., Li, X., Xie, D., Feng, T., Chen, Y., Song, R., … Zhu, H. (2013). Graphene/semiconductor heterojunction solar cells with modulated antireflection and graphene work function. Energy Environ. Sci., 6(1), 108-115. doi:10.1039/c2ee23538b
Pruna, A., Reyes-Tolosa, M. D., Pullini, D., Hernandez-Fenollosa, M. A., & Busquets-Mataix, D. (2015). Seed-free electrodeposition of ZnO bi-pods on electrophoretically-reduced graphene oxide for optoelectronic applications. Ceramics International, 41(2), 2381-2388. doi:10.1016/j.ceramint.2014.10.052
Li, D., Cui, J., Li, H., Huang, D., Wang, M., & Shen, Y. (2016). Graphene oxide modified hole transport layer for CH3NH3PbI3 planar heterojunction solar cells. Solar Energy, 131, 176-182. doi:10.1016/j.solener.2016.02.049
Riveros, G., Ramírez, D., Tello, A., Schrebler, R., Henríquez, R., & Gómez, H. (2012). Electrodeposition of ZnO from DMSO solution: influence of anion nature and its concentration in the nucleation and growth mechanisms. Journal of the Brazilian Chemical Society, 23(3), 505-512. doi:10.1590/s0103-50532012000300018
Yilmaz, C., & Unal, U. (2017). Hydrothermal–electrochemical growth of heterogeneous ZnO: Co films. Applied Nanoscience, 7(7), 343-354. doi:10.1007/s13204-017-0579-6
GÓMEZ, H., CANTILLANA, S., F.A., C., ALTAMIRANO, H., & BURGOS, A. (2014). TEMPLATE ASSISTED ELECTRODEPOSITION OF HIGHLY ORIENTED ZnO NANOWIRE ARRAYS AND THEIR INTEGRATION IN DYE SENSITIZED SOLAR CELLS. Journal of the Chilean Chemical Society, 59(2), 2447-2450. doi:10.4067/s0717-97072014000200010
Cembrero, J., Perales, M., Mollar, M., & Marí, B. (2003). Obtención de columnas de ZnO. Variables a controlar (I). Boletín de la Sociedad Española de Cerámica y Vidrio, 42(6), 379-387. doi:10.3989/cyv.2003.v42.i6.626
Oliveira, F. F., Proenca, M. P., Araújo, J. P., & Ventura, J. (2016). Electrodeposition of ZnO thin films on conducting flexible substrates. Journal of Materials Science, 51(12), 5589-5597. doi:10.1007/s10853-016-9850-6
Londhe, P. U., & Chaure, N. B. (2017). Effect of pH on the properties of electrochemically prepared ZnO thin films. Materials Science in Semiconductor Processing, 60, 5-15. doi:10.1016/j.mssp.2016.12.005
Mezine, Z., Kadri, A., Hamadou, L., Benbrahim, N., & Chaouchi, A. (2018). Electrodeposition of copper oxides (CuxOy) from acetate bath. Journal of Electroanalytical Chemistry, 817, 36-47. doi:10.1016/j.jelechem.2018.03.055
Perng, D.-C., Chen, J.-W., Kao, T.-T., & Chang, R.-P. (2013). Cu 2 O growth characteristics on an array of ZnO nanorods for the nano-structured solar cells. Surface and Coatings Technology, 231, 261-266. doi:10.1016/j.surfcoat.2012.05.054
Venkatesan, A., & Kannan, E. S. (2017). Highly ordered copper oxide (Cu 2 O) nanopillar arrays using template assisted electrodeposition technique and their temperature dependent electrical characteristics. Current Applied Physics, 17(5), 806-812. doi:10.1016/j.cap.2017.03.005
Scharifker, B., & Hills, G. (1983). Theoretical and experimental studies of multiple nucleation. Electrochimica Acta, 28(7), 879-889. doi:10.1016/0013-4686(83)85163-9
Lahmar, H., Setifi, F., Azizi, A., Schmerber, G., & Dinia, A. (2017). On the electrochemical synthesis and characterization of p-Cu2O/n-ZnO heterojunction. Journal of Alloys and Compounds, 718, 36-45. doi:10.1016/j.jallcom.2017.05.054
Septina, W., Ikeda, S., Khan, M. A., Hirai, T., Harada, T., Matsumura, M., & Peter, L. M. (2011). Potentiostatic electrodeposition of cuprous oxide thin films for photovoltaic applications. Electrochimica Acta, 56(13), 4882-4888. doi:10.1016/j.electacta.2011.02.075
Shi, B., Liu, B., Luo, J., Li, Y., Zheng, C., Yao, X., … Zhang, X. (2017). Enhanced light absorption of thin perovskite solar cells using textured substrates. Solar Energy Materials and Solar Cells, 168, 214-220. doi:10.1016/j.solmat.2017.04.038
Pullini, D., Pruna, A., Zanin, S., & Mataix, D. B. (2011). High-Efficiency Electrodeposition of Large Scale ZnO Nanorod Arrays for Thin Transparent Electrodes. Journal of The Electrochemical Society, 159(2), E45-E51. doi:10.1149/2.093202jes
Pruna, A., Shao, Q., Kamruzzaman, M., Zapien, J. A., & Ruotolo, A. (2016). Optimized properties of ZnO nanorod arrays grown on graphene oxide seed layer by combined chemical and electrochemical approach. Ceramics International, 42(15), 17192-17201. doi:10.1016/j.ceramint.2016.08.011
Manjón, F. J., Syassen, K., & Lauck, R. (2002). Effect of Pressure on Phonon Modes in Wurtzite Zinc Oxide. High Pressure Research, 22(2), 299-304. doi:10.1080/08957950212798
Marí, B., Manjón, F. J., Mollar, M., Cembrero, J., & Gómez, R. (2006). Photoluminescence of thermal-annealed nanocolumnar ZnO thin films grown by electrodeposition. Applied Surface Science, 252(8), 2826-2831. doi:10.1016/j.apsusc.2005.04.024
Kundu, S. (2014). A facile route for the formation of shape-selective ZnO nanoarchitectures with superior photo-catalytic activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 446, 199-212. doi:10.1016/j.colsurfa.2013.12.035
Pruna, A., Wu, Z., Zapien, J. A., Li, Y. Y., & Ruotolo, A. (2018). Enhanced photocatalytic performance of ZnO nanostructures by electrochemical hybridization with graphene oxide. Applied Surface Science, 441, 936-944. doi:10.1016/j.apsusc.2018.02.117
Pan, X., Yang, M.-Q., & Xu, Y.-J. (2014). Morphology control, defect engineering and photoactivity tuning of ZnO crystals by graphene oxide – a unique 2D macromolecular surfactant. Physical Chemistry Chemical Physics, 16(12), 5589. doi:10.1039/c3cp55038a
Manjón, F. J., Marí, B., Serrano, J., & Romero, A. H. (2005). Silent Raman modes in zinc oxide and related nitrides. Journal of Applied Physics, 97(5), 053516. doi:10.1063/1.1856222
[-]