- -

Improving the Pedestrian's Perceptions of Safety on Street Crossings. Psychological and Neurophysiological Effects of Traffic Lanes, Artificial Lighting, and Vegetation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Improving the Pedestrian's Perceptions of Safety on Street Crossings. Psychological and Neurophysiological Effects of Traffic Lanes, Artificial Lighting, and Vegetation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Llinares Millán, María Del Carmen es_ES
dc.contributor.author Higuera-Trujillo, Juan Luis es_ES
dc.contributor.author Montañana, Antoni es_ES
dc.contributor.author Castilla-Cabanes, Nuria es_ES
dc.date.accessioned 2021-07-15T03:36:14Z
dc.date.available 2021-07-15T03:36:14Z
dc.date.issued 2020-11 es_ES
dc.identifier.uri http://hdl.handle.net/10251/169296
dc.description.abstract [EN] The effect that the physical characteristics of urban design have on the pedestrian's perceptions of safety is a fundamental aspect of city planning. This is particularly so with street crossings, where the pedestrian has to make a decision. This paper analyses how pedestrians are affected by number of traffic lanes, lighting colour temperature, and nearby vegetation as they cross roads. Perceptions of safety were quantified by means of the psychological and neurophysiological responses of 60 participants to 16 virtual reality scenarios (4 day and 12 night), based on existing urban design variables. The results showed differences between night-time and daytime scenarios, which suggests that there is a need to analyse both situations. As to the design guidelines, it was observed that safety is improved by reducing the number of traffic lanes and nearby vegetation, and by using a lighting colour temperature of 4500 K. However, the analysis of the variables showed that combined effects produce different results to those obtained from the analysis of individual elements. This result is essential information for urban managers in their assessments of whether particular interventions will improve crossing points. es_ES
dc.description.sponsorship This work was supported by the Direccion General de Trafico-Ministerio del Interior de Espana (Project SPIP2017-02220). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof International Journal of Environmental research and Public Health (Online) es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Pedestrian evaluation es_ES
dc.subject Urban design es_ES
dc.subject Neuro-architecture es_ES
dc.subject Virtual reality es_ES
dc.subject.classification ORGANIZACION DE EMPRESAS es_ES
dc.subject.classification CONSTRUCCIONES ARQUITECTONICAS es_ES
dc.title Improving the Pedestrian's Perceptions of Safety on Street Crossings. Psychological and Neurophysiological Effects of Traffic Lanes, Artificial Lighting, and Vegetation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/ijerph17228576 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DGT//SPIP2017-02220/ES/Desarrollo de un índice cognitivo-emocional para cuantificar la percepción de seguridad del peatón. Aplicación en espacios urbanos/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Construcciones Arquitectónicas - Departament de Construccions Arquitectòniques es_ES
dc.description.bibliographicCitation Llinares Millán, MDC.; Higuera-Trujillo, JL.; Montañana, A.; Castilla-Cabanes, N. (2020). Improving the Pedestrian's Perceptions of Safety on Street Crossings. Psychological and Neurophysiological Effects of Traffic Lanes, Artificial Lighting, and Vegetation. International Journal of Environmental research and Public Health (Online). 17(22):1-20. https://doi.org/10.3390/ijerph17228576 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/ijerph17228576 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 20 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.description.issue 22 es_ES
dc.identifier.eissn 1660-4601 es_ES
dc.identifier.pmid 33227930 es_ES
dc.identifier.pmcid PMC7699239 es_ES
dc.relation.pasarela S\423830 es_ES
dc.contributor.funder Ministerio del Interior es_ES
dc.contributor.funder Dirección General de Tráfico es_ES
dc.description.references Cho, G., Rodríguez, D. A., & Khattak, A. J. (2009). The role of the built environment in explaining relationships between perceived and actual pedestrian and bicyclist safety. Accident Analysis & Prevention, 41(4), 692-702. doi:10.1016/j.aap.2009.03.008 es_ES
dc.description.references Talavera, R., Soria, J. A., & Valenzuela, L. M. (2014). La calidad peatonal como método para evaluar entornos de movilidad urbana. Documents d’Anàlisi Geogràfica, 60(1), 161. doi:10.5565/rev/dag.55 es_ES
dc.description.references Bernhoft, I. M., & Carstensen, G. (2008). Preferences and behaviour of pedestrians and cyclists by age and gender. Transportation Research Part F: Traffic Psychology and Behaviour, 11(2), 83-95. doi:10.1016/j.trf.2007.08.004 es_ES
dc.description.references Liu, J. Y. (2014). Fear of falling in robust community-dwelling older people: results of a cross-sectional study. Journal of Clinical Nursing, 24(3-4), 393-405. doi:10.1111/jocn.12613 es_ES
dc.description.references Turner, S., Fitzpatrick, K., Brewer, M., & Park, E. S. (2006). Motorist Yielding to Pedestrians at Unsignalized Intersections. Transportation Research Record: Journal of the Transportation Research Board, 1982(1), 1-12. doi:10.1177/0361198106198200102 es_ES
dc.description.references Landis, B. W., Vattikuti, V. R., Ottenberg, R. M., McLeod, D. S., & Guttenplan, M. (2001). Modeling the Roadside Walking Environment: Pedestrian Level of Service. Transportation Research Record: Journal of the Transportation Research Board, 1773(1), 82-88. doi:10.3141/1773-10 es_ES
dc.description.references Feliciani, C., Gorrini, A., Crociani, L., Vizzari, G., Nishinari, K., & Bandini, S. (2020). Calibration and validation of a simulation model for predicting pedestrian fatalities at unsignalized crosswalks by means of statistical traffic data. Journal of Traffic and Transportation Engineering (English Edition), 7(1), 1-18. doi:10.1016/j.jtte.2019.01.004 es_ES
dc.description.references Karndacharuk, A. (Aut), Wilson, D. J., & Dunn, R. C. M. (2014). Safety Performance Study of Shared Pedestrian and Vehicle Space in New Zealand. Transportation Research Record: Journal of the Transportation Research Board, 2464(1), 1-10. doi:10.3141/2464-01 es_ES
dc.description.references Knight, C. (2010). Field surveys of the effect of lamp spectrum on the perception of safety and comfort at night. Lighting Research & Technology, 42(3), 313-329. doi:10.1177/1477153510376794 es_ES
dc.description.references Fotios, S., Unwin, J., & Farrall, S. (2014). Road lighting and pedestrian reassurance after dark: A review. Lighting Research & Technology, 47(4), 449-469. doi:10.1177/1477153514524587 es_ES
dc.description.references Hidayetoglu, M. L., Yildirim, K., & Akalin, A. (2012). The effects of color and light on indoor wayfinding and the evaluation of the perceived environment. Journal of Environmental Psychology, 32(1), 50-58. doi:10.1016/j.jenvp.2011.09.001 es_ES
dc.description.references Tantanatewin, W., & Inkarojrit, V. (2016). Effects of color and lighting on retail impression and identity. Journal of Environmental Psychology, 46, 197-205. doi:10.1016/j.jenvp.2016.04.015 es_ES
dc.description.references Haans, A., & de Kort, Y. A. W. (2012). Light distribution in dynamic street lighting: Two experimental studies on its effects on perceived safety, prospect, concealment, and escape. Journal of Environmental Psychology, 32(4), 342-352. doi:10.1016/j.jenvp.2012.05.006 es_ES
dc.description.references Suzer, O. K., Olgunturk, N., & Guvenc, D. (2018). The effects of correlated colour temperature on wayfinding: A study in a virtual airport environment. Displays, 51, 9-19. doi:10.1016/j.displa.2018.01.003 es_ES
dc.description.references Bratman, G. N., Hamilton, J. P., Hahn, K. S., Daily, G. C., & Gross, J. J. (2015). Nature experience reduces rumination and subgenual prefrontal cortex activation. Proceedings of the National Academy of Sciences, 112(28), 8567-8572. doi:10.1073/pnas.1510459112 es_ES
dc.description.references Chang, C.-Y., & Chen, P.-K. (2005). Human Response to Window Views and Indoor Plants in the Workplace. HortScience, 40(5), 1354-1359. doi:10.21273/hortsci.40.5.1354 es_ES
dc.description.references Van den Berg, A. E., Hartig, T., & Staats, H. (2007). Preference for Nature in Urbanized Societies: Stress, Restoration, and the Pursuit of Sustainability. Journal of Social Issues, 63(1), 79-96. doi:10.1111/j.1540-4560.2007.00497.x es_ES
dc.description.references Lohr, V. I., & Pearson-Mims, C. H. (2006). Responses to Scenes with Spreading, Rounded, and Conical Tree Forms. Environment and Behavior, 38(5), 667-688. doi:10.1177/0013916506287355 es_ES
dc.description.references Foltête, J.-C., & Piombini, A. (2007). Urban layout, landscape features and pedestrian usage. Landscape and Urban Planning, 81(3), 225-234. doi:10.1016/j.landurbplan.2006.12.001 es_ES
dc.description.references Smith, A. L. (2009). Contribution of Perceptions in Analysis of Walking Behavior. Transportation Research Record: Journal of the Transportation Research Board, 2140(1), 128-136. doi:10.3141/2140-14 es_ES
dc.description.references Granié, M.-A., Brenac, T., Montel, M.-C., Millot, M., & Coquelet, C. (2014). Influence of built environment on pedestrian’s crossing decision. Accident Analysis & Prevention, 67, 75-85. doi:10.1016/j.aap.2014.02.008 es_ES
dc.description.references Chu, X., Guttenplan, M., & Baltes, M. R. (2004). Why People Cross Where They Do: The Role of Street Environment. Transportation Research Record: Journal of the Transportation Research Board, 1878(1), 3-10. doi:10.3141/1878-01 es_ES
dc.description.references Dommes, A., & Cavallo, V. (2011). The role of perceptual, cognitive, and motor abilities in street-crossing decisions of young and older pedestrians. Ophthalmic and Physiological Optics, 31(3), 292-301. doi:10.1111/j.1475-1313.2011.00835.x es_ES
dc.description.references Dommes, A., Cavallo, V., Dubuisson, J.-B., Tournier, I., & Vienne, F. (2014). Crossing a two-way street: comparison of young and old pedestrians. Journal of Safety Research, 50, 27-34. doi:10.1016/j.jsr.2014.03.008 es_ES
dc.description.references Lipovac, K., Vujanic, M., Maric, B., & Nesic, M. (2013). Pedestrian Behavior at Signalized Pedestrian Crossings. Journal of Transportation Engineering, 139(2), 165-172. doi:10.1061/(asce)te.1943-5436.0000491 es_ES
dc.description.references Foot, H. C., Thomson, J. A., Tolmie, A. K., Whelan, K. M., Morrison, S., & Sarvary, P. (2006). Children’s understanding of drivers’ intentions. British Journal of Developmental Psychology, 24(4), 681-700. doi:10.1348/026151005x62417 es_ES
dc.description.references Papadimitriou, E., Yannis, G., & Golias, J. (2009). A critical assessment of pedestrian behaviour models. Transportation Research Part F: Traffic Psychology and Behaviour, 12(3), 242-255. doi:10.1016/j.trf.2008.12.004 es_ES
dc.description.references Ewing, R., & Handy, S. (2009). Measuring the Unmeasurable: Urban Design Qualities Related to Walkability. Journal of Urban Design, 14(1), 65-84. doi:10.1080/13574800802451155 es_ES
dc.description.references Ewing, R., Handy, S., Brownson, R. C., Clemente, O., & Winston, E. (2006). Identifying and Measuring Urban Design Qualities Related to Walkability. Journal of Physical Activity and Health, 3(s1), S223-S240. doi:10.1123/jpah.3.s1.s223 es_ES
dc.description.references Kort, Y. A. W. de, IJsselsteijn, W. A., Kooijman, J., & Schuurmans, Y. (2003). Virtual Laboratories: Comparability of Real and Virtual Environments for Environmental Psychology. Presence: Teleoperators and Virtual Environments, 12(4), 360-373. doi:10.1162/105474603322391604 es_ES
dc.description.references Steuer, J. (1992). Defining Virtual Reality: Dimensions Determining Telepresence. Journal of Communication, 42(4), 73-93. doi:10.1111/j.1460-2466.1992.tb00812.x es_ES
dc.description.references Bakker, I., van der Voordt, T., Vink, P., & de Boon, J. (2014). Pleasure, Arousal, Dominance: Mehrabian and Russell revisited. Current Psychology, 33(3), 405-421. doi:10.1007/s12144-014-9219-4 es_ES
dc.description.references Gifford, R., Hine, D. W., Muller-Clemm, W., Reynolds, D. J., & Shaw, K. T. (2000). Decoding Modern Architecture. Environment and Behavior, 32(2), 163-187. doi:10.1177/00139160021972487 es_ES
dc.description.references Aspinall, P., Mavros, P., Coyne, R., & Roe, J. (2013). The urban brain: analysing outdoor physical activity with mobile EEG. British Journal of Sports Medicine, 49(4), 272-276. doi:10.1136/bjsports-2012-091877 es_ES
dc.description.references Gidlow, C. J., Jones, M. V., Hurst, G., Masterson, D., Clark-Carter, D., Tarvainen, M. P., … Nieuwenhuijsen, M. (2016). Where to put your best foot forward: Psycho-physiological responses to walking in natural and urban environments. Journal of Environmental Psychology, 45, 22-29. doi:10.1016/j.jenvp.2015.11.003 es_ES
dc.description.references Higuera-Trujillo, J. L., Llinares Millán, C., Montañana i Aviñó, A., & Rojas, J.-C. (2019). Multisensory stress reduction: a neuro-architecture study of paediatric waiting rooms. Building Research & Information, 48(3), 269-285. doi:10.1080/09613218.2019.1612228 es_ES
dc.description.references Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175-191. doi:10.3758/bf03193146 es_ES
dc.description.references Tilley, S., Neale, C., Patuano, A., & Cinderby, S. (2017). Older People’s Experiences of Mobility and Mood in an Urban Environment: A Mixed Methods Approach Using Electroencephalography (EEG) and Interviews. International Journal of Environmental Research and Public Health, 14(2), 151. doi:10.3390/ijerph14020151 es_ES
dc.description.references Slater, M., Usoh, M., & Steed, A. (1994). Depth of Presence in Virtual Environments. Presence: Teleoperators and Virtual Environments, 3(2), 130-144. doi:10.1162/pres.1994.3.2.130 es_ES
dc.description.references Knyazev, G. G., Savostyanov, A. N., & Levin, E. A. (2004). Alpha oscillations as a correlate of trait anxiety. International Journal of Psychophysiology, 53(2), 147-160. doi:10.1016/j.ijpsycho.2004.03.001 es_ES
dc.description.references Choi, Y., Kim, M., & Chun, C. (2015). Measurement of occupants’ stress based on electroencephalograms (EEG) in twelve combined environments. Building and Environment, 88, 65-72. doi:10.1016/j.buildenv.2014.10.003 es_ES
dc.description.references Keil, A., Müller, M. M., Ray, W. J., Gruber, T., & Elbert, T. (1999). Human Gamma Band Activity and Perception of a Gestalt. The Journal of Neuroscience, 19(16), 7152-7161. doi:10.1523/jneurosci.19-16-07152.1999 es_ES
dc.description.references Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9-21. doi:10.1016/j.jneumeth.2003.10.009 es_ES
dc.description.references Gudmundsson, S., Runarsson, T. P., Sigurdsson, S., Eiriksdottir, G., & Johnsen, K. (2007). Reliability of quantitative EEG features. Clinical Neurophysiology, 118(10), 2162-2171. doi:10.1016/j.clinph.2007.06.018 es_ES
dc.description.references Hyvärinen, A., & Oja, E. (2000). Independent component analysis: algorithms and applications. Neural Networks, 13(4-5), 411-430. doi:10.1016/s0893-6080(00)00026-5 es_ES
dc.description.references Slater, M., & Steed, A. (2000). A Virtual Presence Counter. Presence: Teleoperators and Virtual Environments, 9(5), 413-434. doi:10.1162/105474600566925 es_ES
dc.description.references Fotios, S., & Yao, Q. (2018). The association between correlated colour temperature and scotopic/photopic ratio. Lighting Research & Technology, 51(5), 803-813. doi:10.1177/1477153518779637 es_ES
dc.description.references Loewen, L. J., Steel, G. D., & Suedfeld, P. (1993). Perceived safety from crime in the urban environment. Journal of Environmental Psychology, 13(4), 323-331. doi:10.1016/s0272-4944(05)80254-3 es_ES
dc.description.references Boyce, P. R., Eklund, N. H., Hamilton, B. J., & Bruno, L. D. (2000). Perceptions of safety at night in different lighting conditions. Lighting Research and Technology, 32(2), 79-91. doi:10.1177/096032710003200205 es_ES
dc.description.references Peña-García, A., Hurtado, A., & Aguilar-Luzón, M. C. (2015). Impact of public lighting on pedestrians’ perception of safety and well-being. Safety Science, 78, 142-148. doi:10.1016/j.ssci.2015.04.009 es_ES
dc.description.references Fitzpatrick, C. D., Harrington, C. P., Knodler, M. A., & Romoser, M. R. E. (2014). The influence of clear zone size and roadside vegetation on driver behavior. Journal of Safety Research, 49, 97.e1-104. doi:10.1016/j.jsr.2014.03.006 es_ES
dc.description.references Kuo, F. E. (2001). Coping with Poverty. Environment and Behavior, 33(1), 5-34. doi:10.1177/00139160121972846 es_ES
dc.description.references Mulckhuyse, M., & Theeuwes, J. (2010). Unconscious attentional orienting to exogenous cues: A review of the literature. Acta Psychologica, 134(3), 299-309. doi:10.1016/j.actpsy.2010.03.002 es_ES
dc.description.references Fitzpatrick, C. D., Samuel, S., & Knodler, M. A. (2016). Evaluating the effect of vegetation and clear zone width on driver behavior using a driving simulator. Transportation Research Part F: Traffic Psychology and Behaviour, 42, 80-89. doi:10.1016/j.trf.2016.07.002 es_ES
dc.description.references Mok, J.-H., Landphair, H. C., & Naderi, J. R. (2006). Landscape improvement impacts on roadside safety in Texas. Landscape and Urban Planning, 78(3), 263-274. doi:10.1016/j.landurbplan.2005.09.002 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem