- -

Using Machine-Learning Algorithms for Eutrophication Modeling: Case Study of Mar Menor Lagoon (Spain)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Using Machine-Learning Algorithms for Eutrophication Modeling: Case Study of Mar Menor Lagoon (Spain)

Mostrar el registro completo del ítem

Jimeno-Sáez, P.; Senent-Aparicio, J.; Cecilia-Canales, JM.; Pérez-Sánchez, J. (2020). Using Machine-Learning Algorithms for Eutrophication Modeling: Case Study of Mar Menor Lagoon (Spain). International Journal of Environmental research and Public Health (Online). 17(4):1-14. https://doi.org/10.3390/ijerph17041189

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/169298

Ficheros en el ítem

Metadatos del ítem

Título: Using Machine-Learning Algorithms for Eutrophication Modeling: Case Study of Mar Menor Lagoon (Spain)
Autor: Jimeno-Sáez, Patricia Senent-Aparicio, Javier Cecilia-Canales, José María Pérez-Sánchez, Julio
Entidad UPV: Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors
Fecha difusión:
Resumen:
[EN] The Mar Menor is a hypersaline coastal lagoon with high environmental value and a characteristic example of a highly anthropized hydro-ecosystem located in the southeast of Spain. An unprecedented eutrophication crisis ...[+]
Palabras clave: Multilayer neural network (MLNN) , Support vector regression (SVR) , Water quality , Eutrophication , Chlorophyll-a , Mar Menor coastal lagoon
Derechos de uso: Reconocimiento (by)
Fuente:
International Journal of Environmental research and Public Health (Online). (eissn: 1660-4601 )
DOI: 10.3390/ijerph17041189
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/ijerph17041189
Código del Proyecto:
info:eu-repo/grantAgreement/f SéNeCa//20813%2FPI%2F18/
info:eu-repo/grantAgreement/AEI//RTC-2017-6389-5/
info:eu-repo/grantAgreement/AEI//RYC-2018-025580-I/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096384-B-I00/ES/SOLUCIONES PARA UNA GESTION EFICIENTE DEL TRAFICO VEHICULAR BASADAS EN SISTEMAS Y SERVICIOS EN RED/
Agradecimientos:
This research was partially funded by the Fundacion Seneca del Centro de Coordinacion de la Investigacion de la Region de Murcia under Project 20813/PI/18, and by Spanish Ministry of Science, Innovation and Universities ...[+]
Tipo: Artículo

References

Pérez-Ruzafa, A., Pérez-Ruzafa, I. M., Newton, A., & Marcos, C. (2019). Coastal Lagoons: Environmental Variability, Ecosystem Complexity, and Goods and Services Uniformity. Coasts and Estuaries, 253-276. doi:10.1016/b978-0-12-814003-1.00015-0

Kennish, M. J. (2015). Coastal Lagoons. Encyclopedia of Earth Sciences Series, 140-143. doi:10.1007/978-94-017-8801-4_47

García-Ayllón, S. (2019). New Strategies to Improve Co-Management in Enclosed Coastal Seas and Wetlands Subjected to Complex Environments: Socio-Economic Analysis Applied to an International Recovery Success Case Study after an Environmental Crisis. Sustainability, 11(4), 1039. doi:10.3390/su11041039 [+]
Pérez-Ruzafa, A., Pérez-Ruzafa, I. M., Newton, A., & Marcos, C. (2019). Coastal Lagoons: Environmental Variability, Ecosystem Complexity, and Goods and Services Uniformity. Coasts and Estuaries, 253-276. doi:10.1016/b978-0-12-814003-1.00015-0

Kennish, M. J. (2015). Coastal Lagoons. Encyclopedia of Earth Sciences Series, 140-143. doi:10.1007/978-94-017-8801-4_47

García-Ayllón, S. (2019). New Strategies to Improve Co-Management in Enclosed Coastal Seas and Wetlands Subjected to Complex Environments: Socio-Economic Analysis Applied to an International Recovery Success Case Study after an Environmental Crisis. Sustainability, 11(4), 1039. doi:10.3390/su11041039

Le Moal, M., Gascuel-Odoux, C., Ménesguen, A., Souchon, Y., Étrillard, C., Levain, A., … Pinay, G. (2019). Eutrophication: A new wine in an old bottle? Science of The Total Environment, 651, 1-11. doi:10.1016/j.scitotenv.2018.09.139

Alcolea, A., Contreras, S., Hunink, J. E., García-Aróstegui, J. L., & Jiménez-Martínez, J. (2019). Hydrogeological modelling for the watershed management of the Mar Menor coastal lagoon (Spain). Science of The Total Environment, 663, 901-914. doi:10.1016/j.scitotenv.2019.01.375

Nixon, S. W. (1995). Coastal marine eutrophication: A definition, social causes, and future concerns. Ophelia, 41(1), 199-219. doi:10.1080/00785236.1995.10422044

Huang, J., Gao, J., & Zhang, Y. (2015). Combination of artificial neural network and clustering techniques for predicting phytoplankton biomass of Lake Poyang, China. Limnology, 16(3), 179-191. doi:10.1007/s10201-015-0454-7

Canfield, D. E. (1983). PREDICTION OF CHLOROPHYLL A CONCENTRATIONS IN FLORIDA LAKES: THE IMPORTANCE OF PHOSPHORUS AND NITROGEN. Journal of the American Water Resources Association, 19(2), 255-262. doi:10.1111/j.1752-1688.1983.tb05323.x

Phillips, G., Pietiläinen, O.-P., Carvalho, L., Solimini, A., Lyche Solheim, A., & Cardoso, A. C. (2008). Chlorophyll–nutrient relationships of different lake types using a large European dataset. Aquatic Ecology, 42(2), 213-226. doi:10.1007/s10452-008-9180-0

EL PAÍS https://elpais.com/elpais/2019/10/22/inenglish/1571743580_215496.html

García-Ayllón, S. (2017). Integrated management in coastal lagoons of highly complexity environments: Resilience comparative analysis for three case-studies. Ocean & Coastal Management, 143, 16-25. doi:10.1016/j.ocecoaman.2016.10.007

Garcia-Ayllon, S. (2018). The Integrated Territorial Investment (ITI) of the Mar Menor as a model for the future in the comprehensive management of enclosed coastal seas. Ocean & Coastal Management, 166, 82-97. doi:10.1016/j.ocecoaman.2018.05.004

Pérez-Ruzafa, A., Campillo, S., Fernández-Palacios, J. M., García-Lacunza, A., García-Oliva, M., Ibañez, H., … Marcos, C. (2019). Long-Term Dynamic in Nutrients, Chlorophyll a, and Water Quality Parameters in a Coastal Lagoon During a Process of Eutrophication for Decades, a Sudden Break and a Relatively Rapid Recovery. Frontiers in Marine Science, 6. doi:10.3389/fmars.2019.00026

Iglesias, C., Martínez Torres, J., García Nieto, P. J., Alonso Fernández, J. R., Díaz Muñiz, C., Piñeiro, J. I., & Taboada, J. (2013). Turbidity Prediction in a River Basin by Using Artificial Neural Networks: A Case Study in Northern Spain. Water Resources Management, 28(2), 319-331. doi:10.1007/s11269-013-0487-9

Najah, A., El-Shafie, A., Karim, O. A., & El-Shafie, A. H. (2012). Application of artificial neural networks for water quality prediction. Neural Computing and Applications, 22(S1), 187-201. doi:10.1007/s00521-012-0940-3

Li, X., Cheng, Z., Yu, Q., Bai, Y., & Li, C. (2017). Water-Quality Prediction Using Multimodal Support Vector Regression: Case Study of Jialing River, China. Journal of Environmental Engineering, 143(10), 04017070. doi:10.1061/(asce)ee.1943-7870.0001272

Su, J., Wang, X., Zhao, S., Chen, B., Li, C., & Yang, Z. (2015). A Structurally Simplified Hybrid Model of Genetic Algorithm and Support Vector Machine for Prediction of Chlorophyll a in Reservoirs. Water, 7(12), 1610-1627. doi:10.3390/w7041610

Abba, S. I., Hadi, S. J., & Abdullahi, J. (2017). River water modelling prediction using multi-linear regression, artificial neural network, and adaptive neuro-fuzzy inference system techniques. Procedia Computer Science, 120, 75-82. doi:10.1016/j.procs.2017.11.212

Juntunen, P., Liukkonen, M., Pelo, M., Lehtola, M. J., & Hiltunen, Y. (2012). Modelling of Water Quality: An Application to a Water Treatment Process. Applied Computational Intelligence and Soft Computing, 2012, 1-9. doi:10.1155/2012/846321

Li, X., Sha, J., & Wang, Z. (2016). A comparative study of multiple linear regression, artificial neural network and support vector machine for the prediction of dissolved oxygen. Hydrology Research, 48(5), 1214-1225. doi:10.2166/nh.2016.149

Charulatha, G., Srinivasalu, S., Uma Maheswari, O., Venugopal, T., & Giridharan, L. (2017). Evaluation of ground water quality contaminants using linear regression and artificial neural network models. Arabian Journal of Geosciences, 10(6). doi:10.1007/s12517-017-2867-6

Keller, S., Maier, P., Riese, F., Norra, S., Holbach, A., Börsig, N., … Hinz, S. (2018). Hyperspectral Data and Machine Learning for Estimating CDOM, Chlorophyll a, Diatoms, Green Algae and Turbidity. International Journal of Environmental Research and Public Health, 15(9), 1881. doi:10.3390/ijerph15091881

Li, X., Sha, J., & Wang, Z.-L. (2017). Chlorophyll-A Prediction of Lakes with Different Water Quality Patterns in China Based on Hybrid Neural Networks. Water, 9(7), 524. doi:10.3390/w9070524

Yi, H.-S., Park, S., An, K.-G., & Kwak, K.-C. (2018). Algal Bloom Prediction Using Extreme Learning Machine Models at Artificial Weirs in the Nakdong River, Korea. International Journal of Environmental Research and Public Health, 15(10), 2078. doi:10.3390/ijerph15102078

Nazeer, M., Bilal, M., Alsahli, M., Shahzad, M., & Waqas, A. (2017). Evaluation of Empirical and Machine Learning Algorithms for Estimation of Coastal Water Quality Parameters. ISPRS International Journal of Geo-Information, 6(11), 360. doi:10.3390/ijgi6110360

Erena, Domínguez, Aguado, Soria, & García-Galiano. (2019). Monitoring Coastal Lagoon Water Quality Through Remote Sensing: The Mar Menor as a Case Study. Water, 11(7), 1468. doi:10.3390/w11071468

García-Oliva, M., Marcos, C., Umgiesser, G., McKiver, W., Ghezzo, M., De Pascalis, F., & Pérez-Ruzafa, A. (2019). Modelling the impact of dredging inlets on the salinity and temperature regimes in coastal lagoons. Ocean & Coastal Management, 180, 104913. doi:10.1016/j.ocecoaman.2019.104913

López-Ballesteros, A., Senent-Aparicio, J., Srinivasan, R., & Pérez-Sánchez, J. (2019). Assessing the Impact of Best Management Practices in a Highly Anthropogenic and Ungauged Watershed Using the SWAT Model: A Case Study in the El Beal Watershed (Southeast Spain). Agronomy, 9(10), 576. doi:10.3390/agronomy9100576

Senent-Aparicio, J., Pérez-Sánchez, J., García-Aróstegui, J., Bielsa-Artero, A., & Domingo-Pinillos, J. (2015). Evaluating Groundwater Management Sustainability under Limited Data Availability in Semiarid Zones. Water, 7(12), 4305-4322. doi:10.3390/w7084305

Navarro, M. C., Pérez-Sirvent, C., Martínez-Sánchez, M. J., Vidal, J., Tovar, P. J., & Bech, J. (2008). Abandoned mine sites as a source of contamination by heavy metals: A case study in a semi-arid zone. Journal of Geochemical Exploration, 96(2-3), 183-193. doi:10.1016/j.gexplo.2007.04.011

Conesa, H. M., & Jiménez-Cárceles, F. J. (2007). The Mar Menor lagoon (SE Spain): A singular natural ecosystem threatened by human activities. Marine Pollution Bulletin, 54(7), 839-849. doi:10.1016/j.marpolbul.2007.05.007

Domingo-Pinillos, J., Senent-Aparicio, J., García-Aróstegui, J., & Baudron, P. (2018). Long Term Hydrodynamic Effects in a Semi-Arid Mediterranean Multilayer Aquifer: Campo de Cartagena in South-Eastern Spain. Water, 10(10), 1320. doi:10.3390/w10101320

Stefanova, A., Hesse, C., & Krysanova, V. (2015). Combined Impacts of Medium Term Socio-Economic Changes and Climate Change on Water Resources in a Managed Mediterranean Catchment. Water, 7(12), 1538-1567. doi:10.3390/w7041538

Velasco, J., Lloret, J., Millan, A., Marin, A., Barahona, J., Abellan, P., & Sanchez-Fernandez, D. (2006). Nutrient And Particulate Inputs Into The Mar Menor Lagoon (Se Spain) From An Intensive Agricultural Watershed. Water, Air, and Soil Pollution, 176(1-4), 37-56. doi:10.1007/s11270-006-2859-8

García-Oliva, M., Pérez-Ruzafa, Á., Umgiesser, G., McKiver, W., Ghezzo, M., De Pascalis, F., & Marcos, C. (2018). Assessing the Hydrodynamic Response of the Mar Menor Lagoon to Dredging Inlets Interventions through Numerical Modelling. Water, 10(7), 959. doi:10.3390/w10070959

Wei, B., Sugiura, N., & Maekawa, T. (2001). Use of artificial neural network in the prediction of algal blooms. Water Research, 35(8), 2022-2028. doi:10.1016/s0043-1354(00)00464-4

(2000). Artificial Neural Networks in Hydrology. I: Preliminary Concepts. Journal of Hydrologic Engineering, 5(2), 115-123. doi:10.1061/(asce)1084-0699(2000)5:2(115)

Jimeno-Sáez, P., Senent-Aparicio, J., Pérez-Sánchez, J., & Pulido-Velazquez, D. (2018). A Comparison of SWAT and ANN Models for Daily Runoff Simulation in Different Climatic Zones of Peninsular Spain. Water, 10(2), 192. doi:10.3390/w10020192

Nguyen, V. D., Tan, R. R., Brondial, Y., & Fuchino, T. (2007). Prediction of vapor–liquid equilibrium data for ternary systems using artificial neural networks. Fluid Phase Equilibria, 254(1-2), 188-197. doi:10.1016/j.fluid.2007.03.014

Bekkari, N., & Zeddouri, A. (2019). Using artificial neural network for predicting and controlling the effluent chemical oxygen demand in wastewater treatment plant. Management of Environmental Quality: An International Journal, 30(3), 593-608. doi:10.1108/meq-04-2018-0084

Zhang, Y., Gao, X., Smith, K., Inial, G., Liu, S., Conil, L. B., & Pan, B. (2019). Integrating water quality and operation into prediction of water production in drinking water treatment plants by genetic algorithm enhanced artificial neural network. Water Research, 164, 114888. doi:10.1016/j.watres.2019.114888

Naghibi, S. A., Ahmadi, K., & Daneshi, A. (2017). Application of Support Vector Machine, Random Forest, and Genetic Algorithm Optimized Random Forest Models in Groundwater Potential Mapping. Water Resources Management, 31(9), 2761-2775. doi:10.1007/s11269-017-1660-3

Kuhn, M. (2008). Building Predictive Models inRUsing thecaretPackage. Journal of Statistical Software, 28(5). doi:10.18637/jss.v028.i05

Caret: Classification and Regression Training, R Package Version 6.0-84 https://CRAN.R-project.org/package=caret

Maier, H. R., Jain, A., Dandy, G. C., & Sudheer, K. P. (2010). Methods used for the development of neural networks for the prediction of water resource variables in river systems: Current status and future directions. Environmental Modelling & Software, 25(8), 891-909. doi:10.1016/j.envsoft.2010.02.003

Kumar, S., & Bucher, P. (2016). Predicting transcription factor site occupancy using DNA sequence intrinsic and cell-type specific chromatin features. BMC Bioinformatics, 17(S1). doi:10.1186/s12859-015-0846-z

Mjalli, F. S., Al-Asheh, S., & Alfadala, H. E. (2007). Use of artificial neural network black-box modeling for the prediction of wastewater treatment plants performance. Journal of Environmental Management, 83(3), 329-338. doi:10.1016/j.jenvman.2006.03.004

Palani, S., Liong, S.-Y., & Tkalich, P. (2008). An ANN application for water quality forecasting. Marine Pollution Bulletin, 56(9), 1586-1597. doi:10.1016/j.marpolbul.2008.05.021

Kuo, J.-T., Hsieh, M.-H., Lung, W.-S., & She, N. (2007). Using artificial neural network for reservoir eutrophication prediction. Ecological Modelling, 200(1-2), 171-177. doi:10.1016/j.ecolmodel.2006.06.018

Jimeno-Sáez, P., Senent-Aparicio, J., Pérez-Sánchez, J., Pulido-Velazquez, D., & Cecilia, J. (2017). Estimation of Instantaneous Peak Flow Using Machine-Learning Models and Empirical Formula in Peninsular Spain. Water, 9(5), 347. doi:10.3390/w9050347

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem