- -

Using Machine-Learning Algorithms for Eutrophication Modeling: Case Study of Mar Menor Lagoon (Spain)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Using Machine-Learning Algorithms for Eutrophication Modeling: Case Study of Mar Menor Lagoon (Spain)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Jimeno-Sáez, Patricia es_ES
dc.contributor.author Senent-Aparicio, Javier es_ES
dc.contributor.author Cecilia-Canales, José María es_ES
dc.contributor.author Pérez-Sánchez, Julio es_ES
dc.date.accessioned 2021-07-15T03:36:24Z
dc.date.available 2021-07-15T03:36:24Z
dc.date.issued 2020-02 es_ES
dc.identifier.uri http://hdl.handle.net/10251/169298
dc.description.abstract [EN] The Mar Menor is a hypersaline coastal lagoon with high environmental value and a characteristic example of a highly anthropized hydro-ecosystem located in the southeast of Spain. An unprecedented eutrophication crisis in 2016 and 2019 with abrupt changes in the quality of its waters caused a great social alarm. Understanding and modeling the level of a eutrophication indicator, such as chlorophyll-a (Chl-a), benefits the management of this complex system. In this study, we investigate the potential machine learning (ML) methods to predict the level of Chl-a. Particularly, Multilayer Neural Networks (MLNNs) and Support Vector Regressions (SVRs) are evaluated using as a target dataset information of up to nine different water quality parameters. The most relevant input combinations were extracted using wrapper feature selection methods which simplified the structure of the model, resulting in a more accurate and efficient procedure. Although the performance in the validation phase showed that SVR models obtained better results than MLNNs, experimental results indicated that both ML algorithms provide satisfactory results in the prediction of Chl-a concentration, reaching up to 0.7 R-CV(2) (cross-validated coefficient of determination) for the best-fit models. es_ES
dc.description.sponsorship This research was partially funded by the Fundacion Seneca del Centro de Coordinacion de la Investigacion de la Region de Murcia under Project 20813/PI/18, and by Spanish Ministry of Science, Innovation and Universities under grants RTI2018-096384-B-I00 and RTC-2017-6389-5. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof International Journal of Environmental research and Public Health (Online) es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Multilayer neural network (MLNN) es_ES
dc.subject Support vector regression (SVR) es_ES
dc.subject Water quality es_ES
dc.subject Eutrophication es_ES
dc.subject Chlorophyll-a es_ES
dc.subject Mar Menor coastal lagoon es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Using Machine-Learning Algorithms for Eutrophication Modeling: Case Study of Mar Menor Lagoon (Spain) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/ijerph17041189 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/f SéNeCa//20813%2FPI%2F18/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//RTC-2017-6389-5/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//RYC-2018-025580-I/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096384-B-I00/ES/SOLUCIONES PARA UNA GESTION EFICIENTE DEL TRAFICO VEHICULAR BASADAS EN SISTEMAS Y SERVICIOS EN RED/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Jimeno-Sáez, P.; Senent-Aparicio, J.; Cecilia-Canales, JM.; Pérez-Sánchez, J. (2020). Using Machine-Learning Algorithms for Eutrophication Modeling: Case Study of Mar Menor Lagoon (Spain). International Journal of Environmental research and Public Health (Online). 17(4):1-14. https://doi.org/10.3390/ijerph17041189 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/ijerph17041189 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 1660-4601 es_ES
dc.identifier.pmid 32069834 es_ES
dc.identifier.pmcid PMC7068380 es_ES
dc.relation.pasarela S\403848 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Fundación Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia es_ES
dc.description.references Pérez-Ruzafa, A., Pérez-Ruzafa, I. M., Newton, A., & Marcos, C. (2019). Coastal Lagoons: Environmental Variability, Ecosystem Complexity, and Goods and Services Uniformity. Coasts and Estuaries, 253-276. doi:10.1016/b978-0-12-814003-1.00015-0 es_ES
dc.description.references Kennish, M. J. (2015). Coastal Lagoons. Encyclopedia of Earth Sciences Series, 140-143. doi:10.1007/978-94-017-8801-4_47 es_ES
dc.description.references García-Ayllón, S. (2019). New Strategies to Improve Co-Management in Enclosed Coastal Seas and Wetlands Subjected to Complex Environments: Socio-Economic Analysis Applied to an International Recovery Success Case Study after an Environmental Crisis. Sustainability, 11(4), 1039. doi:10.3390/su11041039 es_ES
dc.description.references Le Moal, M., Gascuel-Odoux, C., Ménesguen, A., Souchon, Y., Étrillard, C., Levain, A., … Pinay, G. (2019). Eutrophication: A new wine in an old bottle? Science of The Total Environment, 651, 1-11. doi:10.1016/j.scitotenv.2018.09.139 es_ES
dc.description.references Alcolea, A., Contreras, S., Hunink, J. E., García-Aróstegui, J. L., & Jiménez-Martínez, J. (2019). Hydrogeological modelling for the watershed management of the Mar Menor coastal lagoon (Spain). Science of The Total Environment, 663, 901-914. doi:10.1016/j.scitotenv.2019.01.375 es_ES
dc.description.references Nixon, S. W. (1995). Coastal marine eutrophication: A definition, social causes, and future concerns. Ophelia, 41(1), 199-219. doi:10.1080/00785236.1995.10422044 es_ES
dc.description.references Huang, J., Gao, J., & Zhang, Y. (2015). Combination of artificial neural network and clustering techniques for predicting phytoplankton biomass of Lake Poyang, China. Limnology, 16(3), 179-191. doi:10.1007/s10201-015-0454-7 es_ES
dc.description.references Canfield, D. E. (1983). PREDICTION OF CHLOROPHYLL A CONCENTRATIONS IN FLORIDA LAKES: THE IMPORTANCE OF PHOSPHORUS AND NITROGEN. Journal of the American Water Resources Association, 19(2), 255-262. doi:10.1111/j.1752-1688.1983.tb05323.x es_ES
dc.description.references Phillips, G., Pietiläinen, O.-P., Carvalho, L., Solimini, A., Lyche Solheim, A., & Cardoso, A. C. (2008). Chlorophyll–nutrient relationships of different lake types using a large European dataset. Aquatic Ecology, 42(2), 213-226. doi:10.1007/s10452-008-9180-0 es_ES
dc.description.references EL PAÍS https://elpais.com/elpais/2019/10/22/inenglish/1571743580_215496.html es_ES
dc.description.references García-Ayllón, S. (2017). Integrated management in coastal lagoons of highly complexity environments: Resilience comparative analysis for three case-studies. Ocean & Coastal Management, 143, 16-25. doi:10.1016/j.ocecoaman.2016.10.007 es_ES
dc.description.references Garcia-Ayllon, S. (2018). The Integrated Territorial Investment (ITI) of the Mar Menor as a model for the future in the comprehensive management of enclosed coastal seas. Ocean & Coastal Management, 166, 82-97. doi:10.1016/j.ocecoaman.2018.05.004 es_ES
dc.description.references Pérez-Ruzafa, A., Campillo, S., Fernández-Palacios, J. M., García-Lacunza, A., García-Oliva, M., Ibañez, H., … Marcos, C. (2019). Long-Term Dynamic in Nutrients, Chlorophyll a, and Water Quality Parameters in a Coastal Lagoon During a Process of Eutrophication for Decades, a Sudden Break and a Relatively Rapid Recovery. Frontiers in Marine Science, 6. doi:10.3389/fmars.2019.00026 es_ES
dc.description.references Iglesias, C., Martínez Torres, J., García Nieto, P. J., Alonso Fernández, J. R., Díaz Muñiz, C., Piñeiro, J. I., & Taboada, J. (2013). Turbidity Prediction in a River Basin by Using Artificial Neural Networks: A Case Study in Northern Spain. Water Resources Management, 28(2), 319-331. doi:10.1007/s11269-013-0487-9 es_ES
dc.description.references Najah, A., El-Shafie, A., Karim, O. A., & El-Shafie, A. H. (2012). Application of artificial neural networks for water quality prediction. Neural Computing and Applications, 22(S1), 187-201. doi:10.1007/s00521-012-0940-3 es_ES
dc.description.references Li, X., Cheng, Z., Yu, Q., Bai, Y., & Li, C. (2017). Water-Quality Prediction Using Multimodal Support Vector Regression: Case Study of Jialing River, China. Journal of Environmental Engineering, 143(10), 04017070. doi:10.1061/(asce)ee.1943-7870.0001272 es_ES
dc.description.references Su, J., Wang, X., Zhao, S., Chen, B., Li, C., & Yang, Z. (2015). A Structurally Simplified Hybrid Model of Genetic Algorithm and Support Vector Machine for Prediction of Chlorophyll a in Reservoirs. Water, 7(12), 1610-1627. doi:10.3390/w7041610 es_ES
dc.description.references Abba, S. I., Hadi, S. J., & Abdullahi, J. (2017). River water modelling prediction using multi-linear regression, artificial neural network, and adaptive neuro-fuzzy inference system techniques. Procedia Computer Science, 120, 75-82. doi:10.1016/j.procs.2017.11.212 es_ES
dc.description.references Juntunen, P., Liukkonen, M., Pelo, M., Lehtola, M. J., & Hiltunen, Y. (2012). Modelling of Water Quality: An Application to a Water Treatment Process. Applied Computational Intelligence and Soft Computing, 2012, 1-9. doi:10.1155/2012/846321 es_ES
dc.description.references Li, X., Sha, J., & Wang, Z. (2016). A comparative study of multiple linear regression, artificial neural network and support vector machine for the prediction of dissolved oxygen. Hydrology Research, 48(5), 1214-1225. doi:10.2166/nh.2016.149 es_ES
dc.description.references Charulatha, G., Srinivasalu, S., Uma Maheswari, O., Venugopal, T., & Giridharan, L. (2017). Evaluation of ground water quality contaminants using linear regression and artificial neural network models. Arabian Journal of Geosciences, 10(6). doi:10.1007/s12517-017-2867-6 es_ES
dc.description.references Keller, S., Maier, P., Riese, F., Norra, S., Holbach, A., Börsig, N., … Hinz, S. (2018). Hyperspectral Data and Machine Learning for Estimating CDOM, Chlorophyll a, Diatoms, Green Algae and Turbidity. International Journal of Environmental Research and Public Health, 15(9), 1881. doi:10.3390/ijerph15091881 es_ES
dc.description.references Li, X., Sha, J., & Wang, Z.-L. (2017). Chlorophyll-A Prediction of Lakes with Different Water Quality Patterns in China Based on Hybrid Neural Networks. Water, 9(7), 524. doi:10.3390/w9070524 es_ES
dc.description.references Yi, H.-S., Park, S., An, K.-G., & Kwak, K.-C. (2018). Algal Bloom Prediction Using Extreme Learning Machine Models at Artificial Weirs in the Nakdong River, Korea. International Journal of Environmental Research and Public Health, 15(10), 2078. doi:10.3390/ijerph15102078 es_ES
dc.description.references Nazeer, M., Bilal, M., Alsahli, M., Shahzad, M., & Waqas, A. (2017). Evaluation of Empirical and Machine Learning Algorithms for Estimation of Coastal Water Quality Parameters. ISPRS International Journal of Geo-Information, 6(11), 360. doi:10.3390/ijgi6110360 es_ES
dc.description.references Erena, Domínguez, Aguado, Soria, & García-Galiano. (2019). Monitoring Coastal Lagoon Water Quality Through Remote Sensing: The Mar Menor as a Case Study. Water, 11(7), 1468. doi:10.3390/w11071468 es_ES
dc.description.references García-Oliva, M., Marcos, C., Umgiesser, G., McKiver, W., Ghezzo, M., De Pascalis, F., & Pérez-Ruzafa, A. (2019). Modelling the impact of dredging inlets on the salinity and temperature regimes in coastal lagoons. Ocean & Coastal Management, 180, 104913. doi:10.1016/j.ocecoaman.2019.104913 es_ES
dc.description.references López-Ballesteros, A., Senent-Aparicio, J., Srinivasan, R., & Pérez-Sánchez, J. (2019). Assessing the Impact of Best Management Practices in a Highly Anthropogenic and Ungauged Watershed Using the SWAT Model: A Case Study in the El Beal Watershed (Southeast Spain). Agronomy, 9(10), 576. doi:10.3390/agronomy9100576 es_ES
dc.description.references Senent-Aparicio, J., Pérez-Sánchez, J., García-Aróstegui, J., Bielsa-Artero, A., & Domingo-Pinillos, J. (2015). Evaluating Groundwater Management Sustainability under Limited Data Availability in Semiarid Zones. Water, 7(12), 4305-4322. doi:10.3390/w7084305 es_ES
dc.description.references Navarro, M. C., Pérez-Sirvent, C., Martínez-Sánchez, M. J., Vidal, J., Tovar, P. J., & Bech, J. (2008). Abandoned mine sites as a source of contamination by heavy metals: A case study in a semi-arid zone. Journal of Geochemical Exploration, 96(2-3), 183-193. doi:10.1016/j.gexplo.2007.04.011 es_ES
dc.description.references Conesa, H. M., & Jiménez-Cárceles, F. J. (2007). The Mar Menor lagoon (SE Spain): A singular natural ecosystem threatened by human activities. Marine Pollution Bulletin, 54(7), 839-849. doi:10.1016/j.marpolbul.2007.05.007 es_ES
dc.description.references Domingo-Pinillos, J., Senent-Aparicio, J., García-Aróstegui, J., & Baudron, P. (2018). Long Term Hydrodynamic Effects in a Semi-Arid Mediterranean Multilayer Aquifer: Campo de Cartagena in South-Eastern Spain. Water, 10(10), 1320. doi:10.3390/w10101320 es_ES
dc.description.references Stefanova, A., Hesse, C., & Krysanova, V. (2015). Combined Impacts of Medium Term Socio-Economic Changes and Climate Change on Water Resources in a Managed Mediterranean Catchment. Water, 7(12), 1538-1567. doi:10.3390/w7041538 es_ES
dc.description.references Velasco, J., Lloret, J., Millan, A., Marin, A., Barahona, J., Abellan, P., & Sanchez-Fernandez, D. (2006). Nutrient And Particulate Inputs Into The Mar Menor Lagoon (Se Spain) From An Intensive Agricultural Watershed. Water, Air, and Soil Pollution, 176(1-4), 37-56. doi:10.1007/s11270-006-2859-8 es_ES
dc.description.references García-Oliva, M., Pérez-Ruzafa, Á., Umgiesser, G., McKiver, W., Ghezzo, M., De Pascalis, F., & Marcos, C. (2018). Assessing the Hydrodynamic Response of the Mar Menor Lagoon to Dredging Inlets Interventions through Numerical Modelling. Water, 10(7), 959. doi:10.3390/w10070959 es_ES
dc.description.references Wei, B., Sugiura, N., & Maekawa, T. (2001). Use of artificial neural network in the prediction of algal blooms. Water Research, 35(8), 2022-2028. doi:10.1016/s0043-1354(00)00464-4 es_ES
dc.description.references (2000). Artificial Neural Networks in Hydrology. I: Preliminary Concepts. Journal of Hydrologic Engineering, 5(2), 115-123. doi:10.1061/(asce)1084-0699(2000)5:2(115) es_ES
dc.description.references Jimeno-Sáez, P., Senent-Aparicio, J., Pérez-Sánchez, J., & Pulido-Velazquez, D. (2018). A Comparison of SWAT and ANN Models for Daily Runoff Simulation in Different Climatic Zones of Peninsular Spain. Water, 10(2), 192. doi:10.3390/w10020192 es_ES
dc.description.references Nguyen, V. D., Tan, R. R., Brondial, Y., & Fuchino, T. (2007). Prediction of vapor–liquid equilibrium data for ternary systems using artificial neural networks. Fluid Phase Equilibria, 254(1-2), 188-197. doi:10.1016/j.fluid.2007.03.014 es_ES
dc.description.references Bekkari, N., & Zeddouri, A. (2019). Using artificial neural network for predicting and controlling the effluent chemical oxygen demand in wastewater treatment plant. Management of Environmental Quality: An International Journal, 30(3), 593-608. doi:10.1108/meq-04-2018-0084 es_ES
dc.description.references Zhang, Y., Gao, X., Smith, K., Inial, G., Liu, S., Conil, L. B., & Pan, B. (2019). Integrating water quality and operation into prediction of water production in drinking water treatment plants by genetic algorithm enhanced artificial neural network. Water Research, 164, 114888. doi:10.1016/j.watres.2019.114888 es_ES
dc.description.references Naghibi, S. A., Ahmadi, K., & Daneshi, A. (2017). Application of Support Vector Machine, Random Forest, and Genetic Algorithm Optimized Random Forest Models in Groundwater Potential Mapping. Water Resources Management, 31(9), 2761-2775. doi:10.1007/s11269-017-1660-3 es_ES
dc.description.references Kuhn, M. (2008). Building Predictive Models inRUsing thecaretPackage. Journal of Statistical Software, 28(5). doi:10.18637/jss.v028.i05 es_ES
dc.description.references Caret: Classification and Regression Training, R Package Version 6.0-84 https://CRAN.R-project.org/package=caret es_ES
dc.description.references Maier, H. R., Jain, A., Dandy, G. C., & Sudheer, K. P. (2010). Methods used for the development of neural networks for the prediction of water resource variables in river systems: Current status and future directions. Environmental Modelling & Software, 25(8), 891-909. doi:10.1016/j.envsoft.2010.02.003 es_ES
dc.description.references Kumar, S., & Bucher, P. (2016). Predicting transcription factor site occupancy using DNA sequence intrinsic and cell-type specific chromatin features. BMC Bioinformatics, 17(S1). doi:10.1186/s12859-015-0846-z es_ES
dc.description.references Mjalli, F. S., Al-Asheh, S., & Alfadala, H. E. (2007). Use of artificial neural network black-box modeling for the prediction of wastewater treatment plants performance. Journal of Environmental Management, 83(3), 329-338. doi:10.1016/j.jenvman.2006.03.004 es_ES
dc.description.references Palani, S., Liong, S.-Y., & Tkalich, P. (2008). An ANN application for water quality forecasting. Marine Pollution Bulletin, 56(9), 1586-1597. doi:10.1016/j.marpolbul.2008.05.021 es_ES
dc.description.references Kuo, J.-T., Hsieh, M.-H., Lung, W.-S., & She, N. (2007). Using artificial neural network for reservoir eutrophication prediction. Ecological Modelling, 200(1-2), 171-177. doi:10.1016/j.ecolmodel.2006.06.018 es_ES
dc.description.references Jimeno-Sáez, P., Senent-Aparicio, J., Pérez-Sánchez, J., Pulido-Velazquez, D., & Cecilia, J. (2017). Estimation of Instantaneous Peak Flow Using Machine-Learning Models and Empirical Formula in Peninsular Spain. Water, 9(5), 347. doi:10.3390/w9050347 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem