- -

A Hybrid Fuzzy Multi-criteria Decision Making Model to Evaluate the Overall Performance of Public Emergency Departments: A Case Study

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A Hybrid Fuzzy Multi-criteria Decision Making Model to Evaluate the Overall Performance of Public Emergency Departments: A Case Study

Show full item record

Ortiz-Barrios, M.; Alfaro Saiz, JJ. (2020). A Hybrid Fuzzy Multi-criteria Decision Making Model to Evaluate the Overall Performance of Public Emergency Departments: A Case Study. International Journal of Information Technology & Decision Making. 19(6):1485-1548. https://doi.org/10.1142/S0219622020500364

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/169335

Files in this item

Item Metadata

Title: A Hybrid Fuzzy Multi-criteria Decision Making Model to Evaluate the Overall Performance of Public Emergency Departments: A Case Study
Author: Ortiz-Barrios, Miguel Alfaro Saiz, Juan José
UPV Unit: Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses
Issued date:
Abstract:
[EN] Performance evaluation is relevant for supporting managerial decisions related to the improvement of public emergency departments (EDs). As different criteria from ED context and several alternatives need to be ...[+]
Subjects: Emergency departments (EDs) , Fuzzy AHP (FAHP) , Fuzzy DEMATEL (FDEMATEL) , TOPSIS , Performance evaluation
Copyrigths: Reserva de todos los derechos
Source:
International Journal of Information Technology & Decision Making. (issn: 0219-6220 )
DOI: 10.1142/S0219622020500364
Publisher:
World Scientific
Publisher version: https://doi.org/10.1142/S0219622020500364
Type: Artículo

References

Lord, K., Parwani, V., Ulrich, A., Finn, E. B., Rothenberg, C., Emerson, B., … Venkatesh, A. K. (2018). Emergency department boarding and adverse hospitalization outcomes among patients admitted to a general medical service. The American Journal of Emergency Medicine, 36(7), 1246-1248. doi:10.1016/j.ajem.2018.03.043

Sørup, C. M., Jacobsen, P., & Forberg, J. L. (2013). Evaluation of emergency department performance – a systematic review on recommended performance and quality-in-care measures. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine, 21(1). doi:10.1186/1757-7241-21-62

Farokhi, S., & Roghanian, E. (2018). Determining quantitative targets for performance measures in the balanced scorecard method using response surface methodology. Management Decision, 56(9), 2006-2037. doi:10.1108/md-08-2017-0772 [+]
Lord, K., Parwani, V., Ulrich, A., Finn, E. B., Rothenberg, C., Emerson, B., … Venkatesh, A. K. (2018). Emergency department boarding and adverse hospitalization outcomes among patients admitted to a general medical service. The American Journal of Emergency Medicine, 36(7), 1246-1248. doi:10.1016/j.ajem.2018.03.043

Sørup, C. M., Jacobsen, P., & Forberg, J. L. (2013). Evaluation of emergency department performance – a systematic review on recommended performance and quality-in-care measures. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine, 21(1). doi:10.1186/1757-7241-21-62

Farokhi, S., & Roghanian, E. (2018). Determining quantitative targets for performance measures in the balanced scorecard method using response surface methodology. Management Decision, 56(9), 2006-2037. doi:10.1108/md-08-2017-0772

Ortiz Barrios, M. A., & Felizzola Jiménez, H. (2016). Use of Six Sigma Methodology to Reduce Appointment Lead-Time in Obstetrics Outpatient Department. Journal of Medical Systems, 40(10). doi:10.1007/s10916-016-0577-3

Sunder M., V., Ganesh, L. S., & Marathe, R. R. (2018). A morphological analysis of research literature on Lean Six Sigma for services. International Journal of Operations & Production Management, 38(1), 149-182. doi:10.1108/ijopm-05-2016-0273

Bergeron, B. P. (2017). Performance Management in Healthcare. doi:10.4324/9781315102214

Santos, S. P., Belton, V., Howick, S., & Pilkington, M. (2018). Measuring organisational performance using a mix of OR methods. Technological Forecasting and Social Change, 131, 18-30. doi:10.1016/j.techfore.2017.07.028

Ho, W., & Ma, X. (2018). The state-of-the-art integrations and applications of the analytic hierarchy process. European Journal of Operational Research, 267(2), 399-414. doi:10.1016/j.ejor.2017.09.007

Dargi, A., Anjomshoae, A., Galankashi, M. R., Memari, A., & Tap, M. B. M. (2014). Supplier Selection: A Fuzzy-ANP Approach. Procedia Computer Science, 31, 691-700. doi:10.1016/j.procs.2014.05.317

Jing, M., Jie, Y., Shou-yi, L., & Lu, W. (2015). Application of fuzzy analytic hierarchy process in the risk assessment of dangerous small-sized reservoirs. International Journal of Machine Learning and Cybernetics, 9(1), 113-123. doi:10.1007/s13042-015-0363-4

Samanlioglu, F., Taskaya, Y. E., Gulen, U. C., & Cokcan, O. (2018). A Fuzzy AHP–TOPSIS-Based Group Decision-Making Approach to IT Personnel Selection. International Journal of Fuzzy Systems, 20(5), 1576-1591. doi:10.1007/s40815-018-0474-7

CHEN, M.-F., TZENG, G.-H., & TANG, T.-I. (2005). FUZZY MCDM APPROACH FOR EVALUATION OF EXPATRIATE ASSIGNMENTS. International Journal of Information Technology & Decision Making, 04(02), 277-296. doi:10.1142/s0219622005001520

Gul, M., Celik, E., Gumus, A. T., & Guneri, A. F. (2016). Emergency department performance evaluation by an integrated simulation and interval type-2 fuzzy MCDM-based scenario analysis. European J. of Industrial Engineering, 10(2), 196. doi:10.1504/ejie.2016.075846

Jovčić, Průša, Dobrodolac, & Švadlenka. (2019). A Proposal for a Decision-Making Tool in Third-Party Logistics (3PL) Provider Selection Based on Multi-Criteria Analysis and the Fuzzy Approach. Sustainability, 11(15), 4236. doi:10.3390/su11154236

Saaty, T. L., & Vargas, L. G. (2012). Models, Methods, Concepts & Applications of the Analytic Hierarchy Process. International Series in Operations Research & Management Science. doi:10.1007/978-1-4614-3597-6

Vargas, L. G. (2016). Voting with Intensity of Preferences. International Journal of Information Technology & Decision Making, 15(04), 839-859. doi:10.1142/s0219622016400058

Lee, K.-C., Tsai, W.-H., Yang, C.-H., & Lin, Y.-Z. (2018). An MCDM approach for selecting green aviation fleet program management strategies under multi-resource limitations. Journal of Air Transport Management, 68, 76-85. doi:10.1016/j.jairtraman.2017.06.011

Labib, A., & Read, M. (2015). A hybrid model for learning from failures: The Hurricane Katrina disaster. Expert Systems with Applications, 42(21), 7869-7881. doi:10.1016/j.eswa.2015.06.020

Hosseini, S., & Khaled, A. A. (2016). A hybrid ensemble and AHP approach for resilient supplier selection. Journal of Intelligent Manufacturing, 30(1), 207-228. doi:10.1007/s10845-016-1241-y

Zavadskas, E. K., Govindan, K., Antucheviciene, J., & Turskis, Z. (2016). Hybrid multiple criteria decision-making methods: a review of applications for sustainability issues. Economic Research-Ekonomska Istraživanja, 29(1), 857-887. doi:10.1080/1331677x.2016.1237302

Lolli, F., Balugani, E., Ishizaka, A., Gamberini, R., Butturi, M. A., Marinello, S., & Rimini, B. (2019). On the elicitation of criteria weights in PROMETHEE-based ranking methods for a mobile application. Expert Systems with Applications, 120, 217-227. doi:10.1016/j.eswa.2018.11.030

De Almeida Filho, A. T., Clemente, T. R. N., Morais, D. C., & de Almeida, A. T. (2018). Preference modeling experiments with surrogate weighting procedures for the PROMETHEE method. European Journal of Operational Research, 264(2), 453-461. doi:10.1016/j.ejor.2017.08.006

Sun, G., Guan, X., Yi, X., & Zhou, Z. (2018). An innovative TOPSIS approach based on hesitant fuzzy correlation coefficient and its applications. Applied Soft Computing, 68, 249-267. doi:10.1016/j.asoc.2018.04.004

Frazão, T. D. C., Camilo, D. G. G., Cabral, E. L. S., & Souza, R. P. (2018). Multicriteria decision analysis (MCDA) in health care: a systematic review of the main characteristics and methodological steps. BMC Medical Informatics and Decision Making, 18(1). doi:10.1186/s12911-018-0663-1

Ortiz-Barrios, M. A., Herrera-Fontalvo, Z., Rúa-Muñoz, J., Ojeda-Gutiérrez, S., De Felice, F., & Petrillo, A. (2018). An integrated approach to evaluate the risk of adverse events in hospital sector. Management Decision, 56(10), 2187-2224. doi:10.1108/md-09-2017-0917

Al Salem, A. A., & Awasthi, A. (2018). Investigating rank reversal in reciprocal fuzzy preference relation based on additive consistency: Causes and solutions. Computers & Industrial Engineering, 115, 573-581. doi:10.1016/j.cie.2017.11.027

Aires, R. F. de F., & Ferreira, L. (2019). A new approach to avoid rank reversal cases in the TOPSIS method. Computers & Industrial Engineering, 132, 84-97. doi:10.1016/j.cie.2019.04.023

Emrouznejad, A., & Yang, G. (2018). A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016. Socio-Economic Planning Sciences, 61, 4-8. doi:10.1016/j.seps.2017.01.008

Arya, A., & Yadav, S. P. (2017). Development of FDEA Models to Measure the Performance Efficiencies of DMUs. International Journal of Fuzzy Systems, 20(1), 163-173. doi:10.1007/s40815-017-0325-y

Mufazzal, S., & Muzakkir, S. M. (2018). A new multi-criterion decision making (MCDM) method based on proximity indexed value for minimizing rank reversals. Computers & Industrial Engineering, 119, 427-438. doi:10.1016/j.cie.2018.03.045

Kaliszewski, I., & Podkopaev, D. (2016). Simple additive weighting—A metamodel for multiple criteria decision analysis methods. Expert Systems with Applications, 54, 155-161. doi:10.1016/j.eswa.2016.01.042

Mousavi-Nasab, S. H., & Sotoudeh-Anvari, A. (2018). A new multi-criteria decision making approach for sustainable material selection problem: A critical study on rank reversal problem. Journal of Cleaner Production, 182, 466-484. doi:10.1016/j.jclepro.2018.02.062

Chen, Z., Ming, X., Zhang, X., Yin, D., & Sun, Z. (2019). A rough-fuzzy DEMATEL-ANP method for evaluating sustainable value requirement of product service system. Journal of Cleaner Production, 228, 485-508. doi:10.1016/j.jclepro.2019.04.145

Jumaah, F. M., Zadain, A. A., Zaidan, B. B., Hamzah, A. K., & Bahbibi, R. (2018). Decision-making solution based multi-measurement design parameter for optimization of GPS receiver tracking channels in static and dynamic real-time positioning multipath environment. Measurement, 118, 83-95. doi:10.1016/j.measurement.2018.01.011

Singh, A., & Prasher, A. (2017). Measuring healthcare service quality from patients’ perspective: using Fuzzy AHP application. Total Quality Management & Business Excellence, 30(3-4), 284-300. doi:10.1080/14783363.2017.1302794

Otay, İ., Oztaysi, B., Cevik Onar, S., & Kahraman, C. (2017). Multi-expert performance evaluation of healthcare institutions using an integrated intuitionistic fuzzy AHP&DEA methodology. Knowledge-Based Systems, 133, 90-106. doi:10.1016/j.knosys.2017.06.028

Awasthi, A., Govindan, K., & Gold, S. (2018). Multi-tier sustainable global supplier selection using a fuzzy AHP-VIKOR based approach. International Journal of Production Economics, 195, 106-117. doi:10.1016/j.ijpe.2017.10.013

Gul, M., Guneri, A. F., & Nasirli, S. M. (2018). A fuzzy-based model for risk assessment of routes in oil transportation. International Journal of Environmental Science and Technology, 16(8), 4671-4686. doi:10.1007/s13762-018-2078-z

Kazancoglu, Y., Kazancoglu, I., & Sagnak, M. (2018). Fuzzy DEMATEL-based green supply chain management performance. Industrial Management & Data Systems, 118(2), 412-431. doi:10.1108/imds-03-2017-0121

Abdullah, L., & Zulkifli, N. (2015). Integration of fuzzy AHP and interval type-2 fuzzy DEMATEL: An application to human resource management. Expert Systems with Applications, 42(9), 4397-4409. doi:10.1016/j.eswa.2015.01.021

Ashtiani, M., & Azgomi, M. A. (2016). A hesitant fuzzy model of computational trust considering hesitancy, vagueness and uncertainty. Applied Soft Computing, 42, 18-37. doi:10.1016/j.asoc.2016.01.023

Zyoud, S. H., & Fuchs-Hanusch, D. (2017). A bibliometric-based survey on AHP and TOPSIS techniques. Expert Systems with Applications, 78, 158-181. doi:10.1016/j.eswa.2017.02.016

Scholz, S., Ngoli, B., & Flessa, S. (2015). Rapid assessment of infrastructure of primary health care facilities – a relevant instrument for health care systems management. BMC Health Services Research, 15(1). doi:10.1186/s12913-015-0838-8

Ivlev, I., Vacek, J., & Kneppo, P. (2015). Multi-criteria decision analysis for supporting the selection of medical devices under uncertainty. European Journal of Operational Research, 247(1), 216-228. doi:10.1016/j.ejor.2015.05.075

Kovacs, E., Strobl, R., Phillips, A., Stephan, A.-J., Müller, M., Gensichen, J., & Grill, E. (2018). Systematic Review and Meta-analysis of the Effectiveness of Implementation Strategies for Non-communicable Disease Guidelines in Primary Health Care. Journal of General Internal Medicine, 33(7), 1142-1154. doi:10.1007/s11606-018-4435-5

Morley, C., Unwin, M., Peterson, G. M., Stankovich, J., & Kinsman, L. (2018). Emergency department crowding: A systematic review of causes, consequences and solutions. PLOS ONE, 13(8), e0203316. doi:10.1371/journal.pone.0203316

Hermann, R. M., Long, E., & Trotta, R. L. (2019). Improving Patients’ Experiences Communicating With Nurses and Providers in the Emergency Department. Journal of Emergency Nursing, 45(5), 523-530. doi:10.1016/j.jen.2018.12.001

Hawley, K. L., Mazer-Amirshahi, M., Zocchi, M. S., Fox, E. R., & Pines, J. M. (2015). Longitudinal Trends in U.S. Drug Shortages for Medications Used in Emergency Departments (2001-2014). Academic Emergency Medicine, 23(1), 63-69. doi:10.1111/acem.12838

Stang, A. S., Crotts, J., Johnson, D. W., Hartling, L., & Guttmann, A. (2015). Crowding Measures Associated With the Quality of Emergency Department Care: A Systematic Review. Academic Emergency Medicine, 22(6), 643-656. doi:10.1111/acem.12682

Chanamool, N., & Naenna, T. (2016). Fuzzy FMEA application to improve decision-making process in an emergency department. Applied Soft Computing, 43, 441-453. doi:10.1016/j.asoc.2016.01.007

Farup, P. G. (2015). Are measurements of patient safety culture and adverse events valid and reliable? Results from a cross sectional study. BMC Health Services Research, 15(1). doi:10.1186/s12913-015-0852-x

Carter, E. J., Pouch, S. M., & Larson, E. L. (2013). The Relationship Between Emergency Department Crowding and Patient Outcomes: A Systematic Review. Journal of Nursing Scholarship, 46(2), 106-115. doi:10.1111/jnu.12055

Ebben, R. H. A., Siqeca, F., Madsen, U. R., Vloet, L. C. M., & van Achterberg, T. (2018). Effectiveness of implementation strategies for the improvement of guideline and protocol adherence in emergency care: a systematic review. BMJ Open, 8(11), e017572. doi:10.1136/bmjopen-2017-017572

Innes, G. D., Sivilotti, M. L. A., Ovens, H., McLelland, K., Dukelow, A., Kwok, E., … Chochinov, A. (2018). Emergency overcrowding and access block: A smaller problem than we think. CJEM, 21(2), 177-185. doi:10.1017/cem.2018.446

Di Somma, S., Paladino, L., Vaughan, L., Lalle, I., Magrini, L., & Magnanti, M. (2014). Overcrowding in emergency department: an international issue. Internal and Emergency Medicine, 10(2), 171-175. doi:10.1007/s11739-014-1154-8

Uthman, O. A., Walker, C., Lahiri, S., Jenkinson, D., Adekanmbi, V., Robertson, W., & Clarke, A. (2018). General practitioners providing non-urgent care in emergency department: a natural experiment. BMJ Open, 8(5), e019736. doi:10.1136/bmjopen-2017-019736

Razzak, J. A., Baqir, S. M., Khan, U. R., Heller, D., Bhatti, J., & Hyder, A. A. (2013). Emergency and trauma care in Pakistan: a cross-sectional study of healthcare levels. Emergency Medicine Journal, 32(3), 207-213. doi:10.1136/emermed-2013-202590

Dart, R. C., Goldfrank, L. R., Erstad, B. L., Huang, D. T., Todd, K. H., Weitz, J., … Anderson, V. E. (2018). Expert Consensus Guidelines for Stocking of Antidotes in Hospitals That Provide Emergency Care. Annals of Emergency Medicine, 71(3), 314-325.e1. doi:10.1016/j.annemergmed.2017.05.021

Mkoka, D. A., Goicolea, I., Kiwara, A., Mwangu, M., & Hurtig, A.-K. (2014). Availability of drugs and medical supplies for emergency obstetric care: experience of health facility managers in a rural District of Tanzania. BMC Pregnancy and Childbirth, 14(1). doi:10.1186/1471-2393-14-108

Beck, M. J., Okerblom, D., Kumar, A., Bandyopadhyay, S., & Scalzi, L. V. (2016). Lean intervention improves patient discharge times, improves emergency department throughput and reduces congestion. Hospital Practice, 44(5), 252-259. doi:10.1080/21548331.2016.1254559

Morais Oliveira, M., Marti, C., Ramlawi, M., Sarasin, F. P., Grosgurin, O., Poletti, P.-A., … Rutschmann, O. T. (2018). Impact of a patient-flow physician coordinator on waiting times and length of stay in an emergency department: A before-after cohort study. PLOS ONE, 13(12), e0209035. doi:10.1371/journal.pone.0209035

Vermeulen, M. J., Stukel, T. A., Boozary, A. S., Guttmann, A., & Schull, M. J. (2016). The Effect of Pay for Performance in the Emergency Department on Patient Waiting Times and Quality of Care in Ontario, Canada: A Difference-in-Differences Analysis. Annals of Emergency Medicine, 67(4), 496-505.e7. doi:10.1016/j.annemergmed.2015.06.028

Singh, S., Lin, Y.-L., Nattinger, A. B., Kuo, Y.-F., & Goodwin, J. S. (2015). Variation in readmission rates by emergency departments and emergency department providers caring for patients after discharge. Journal of Hospital Medicine, 10(11), 705-710. doi:10.1002/jhm.2407

Källberg, A.-S., Göransson, K. E., Florin, J., Östergren, J., Brixey, J. J., & Ehrenberg, A. (2015). Contributing factors to errors in Swedish emergency departments. International Emergency Nursing, 23(2), 156-161. doi:10.1016/j.ienj.2014.10.002

Riga, M., Vozikis, A., Pollalis, Y., & Souliotis, K. (2015). MERIS (Medical Error Reporting Information System) as an innovative patient safety intervention: A health policy perspective. Health Policy, 119(4), 539-548. doi:10.1016/j.healthpol.2014.12.006

Norman, G. R., Monteiro, S. D., Sherbino, J., Ilgen, J. S., Schmidt, H. G., & Mamede, S. (2017). The Causes of Errors in Clinical Reasoning. Academic Medicine, 92(1), 23-30. doi:10.1097/acm.0000000000001421

Lisbon, D., Allin, D., Cleek, C., Roop, L., Brimacombe, M., Downes, C., & Pingleton, S. K. (2014). Improved Knowledge, Attitudes, and Behaviors After Implementation of TeamSTEPPS Training in an Academic Emergency Department. American Journal of Medical Quality, 31(1), 86-90. doi:10.1177/1062860614545123

Li, L., Georgiou, A., Vecellio, E., Eigenstetter, A., Toouli, G., Wilson, R., & Westbrook, J. I. (2015). The Effect of Laboratory Testing on Emergency Department Length of Stay: A Multihospital Longitudinal Study Applying a Cross‐classified Random‐effect Modeling Approach. Academic Emergency Medicine, 22(1), 38-46. doi:10.1111/acem.12565

Telem, D. A., Yang, J., Altieri, M., Patterson, W., Peoples, B., Chen, H., … Pryor, A. D. (2016). Rates and Risk Factors for Unplanned Emergency Department Utilization and Hospital Readmission Following Bariatric Surgery. Annals of Surgery, 263(5), 956-960. doi:10.1097/sla.0000000000001536

Rigobello, M. C. G., Carvalho, R. E. F. L. de, Guerreiro, J. M., Motta, A. P. G., Atila, E., & Gimenes, F. R. E. (2017). The perception of the patient safety climate by professionals of the emergency department. International Emergency Nursing, 33, 1-6. doi:10.1016/j.ienj.2017.03.003

Farmer, B. (2016). Patient Safety in the Emergency Department. Emergency Medicine, 48(9), 396-404. doi:10.12788/emed.2016.0052

Liu, H.-C., You, J.-X., Zhen, L., & Fan, X.-J. (2014). A novel hybrid multiple criteria decision making model for material selection with target-based criteria. Materials & Design, 60, 380-390. doi:10.1016/j.matdes.2014.03.071

Kou, G., Ergu, D., & Shang, J. (2014). Enhancing data consistency in decision matrix: Adapting Hadamard model to mitigate judgment contradiction. European Journal of Operational Research, 236(1), 261-271. doi:10.1016/j.ejor.2013.11.035

Keshavarz Ghorabaee, M., Amiri, M., Zavadskas, E. K., & Antucheviciene, J. (2017). Supplier evaluation and selection in fuzzy environments: a review of MADM approaches. Economic Research-Ekonomska Istraživanja, 30(1), 1073-1118. doi:10.1080/1331677x.2017.1314828

Barrios, M. A. O., De Felice, F., Negrete, K. P., Romero, B. A., Arenas, A. Y., & Petrillo, A. (2016). An AHP-Topsis Integrated Model for Selecting the Most Appropriate Tomography Equipment. International Journal of Information Technology & Decision Making, 15(04), 861-885. doi:10.1142/s021962201640006x

Yeh, D.-Y., & Cheng, C.-H. (2016). Performance Management of Taiwan’s National Hospitals. International Journal of Information Technology & Decision Making, 15(01), 187-213. doi:10.1142/s0219622014500199

Chen, T.-Y. (2014). An Interactive Signed Distance Approach for Multiple Criteria Group Decision-Making Based on Simple Additive Weighting Method with Incomplete Preference Information Defined by Interval Type-2 Fuzzy Sets. International Journal of Information Technology & Decision Making, 13(05), 979-1012. doi:10.1142/s0219622014500229

Gou, X., Xu, Z., & Liao, H. (2019). Hesitant Fuzzy Linguistic Possibility Degree-Based Linear Assignment Method for Multiple Criteria Decision-Making. International Journal of Information Technology & Decision Making, 18(01), 35-63. doi:10.1142/s0219622017500377

Saksrisathaporn, K., Bouras, A., Reeveerakul, N., & Charles, A. (2016). Application of a Decision Model by Using an Integration of AHP and TOPSIS Approaches within Humanitarian Operation Life Cycle. International Journal of Information Technology & Decision Making, 15(04), 887-918. doi:10.1142/s0219622015500261

Hsiao, B., & Chen, L.-H. (2019). Performance Evaluation for Taiwanese Hospitals by Multi-Activity Network Data Envelopment Analysis. International Journal of Information Technology & Decision Making, 18(03), 1009-1043. doi:10.1142/s0219622018500165

Saaty, T. L., & Ergu, D. (2015). When is a Decision-Making Method Trustworthy? Criteria for Evaluating Multi-Criteria Decision-Making Methods. International Journal of Information Technology & Decision Making, 14(06), 1171-1187. doi:10.1142/s021962201550025x

Chang, K.-H., Chang, Y.-C., & Lee, Y.-T. (2014). Integrating TOPSIS and DEMATEL Methods to Rank the Risk of Failure of FMEA. International Journal of Information Technology & Decision Making, 13(06), 1229-1257. doi:10.1142/s0219622014500758

Yeh, T.-M., & Huang, Y.-L. (2014). Factors in determining wind farm location: Integrating GQM, fuzzy DEMATEL, and ANP. Renewable Energy, 66, 159-169. doi:10.1016/j.renene.2013.12.003

Ortíz, M. A., Felizzola, H. A., & Isaza, S. N. (2015). A contrast between DEMATEL-ANP and ANP methods for six sigma project selection: a case study in healthcare industry. BMC Medical Informatics and Decision Making, 15(S3). doi:10.1186/1472-6947-15-s3-s3

Deveci, M., Canıtez, F., & Gökaşar, I. (2018). WASPAS and TOPSIS based interval type-2 fuzzy MCDM method for a selection of a car sharing station. Sustainable Cities and Society, 41, 777-791. doi:10.1016/j.scs.2018.05.034

Roy, J., Sharma, H. K., Kar, S., Zavadskas, E. K., & Saparauskas, J. (2019). An extended COPRAS model for multi-criteria decision-making problems and its application in web-based hotel evaluation and selection. Economic Research-Ekonomska Istraživanja, 32(1), 219-253. doi:10.1080/1331677x.2018.1543054

Keshavarz Ghorabaee, M., Amiri, M., Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. (2017). A new multi-criteria model based on interval type-2 fuzzy sets and EDAS method for supplier evaluation and order allocation with environmental considerations. Computers & Industrial Engineering, 112, 156-174. doi:10.1016/j.cie.2017.08.017

Keshavarz Ghorabaee, M., Zavadskas, E. K., Olfat, L., & Turskis, Z. (2015). Multi-Criteria Inventory Classification Using a New Method of Evaluation Based on Distance from Average Solution (EDAS). Informatica, 26(3), 435-451. doi:10.15388/informatica.2015.57

Kahraman, C., Onar, S. C., & Oztaysi, B. (2015). Fuzzy Multicriteria Decision-Making: A Literature Review. International Journal of Computational Intelligence Systems, 8(4), 637. doi:10.1080/18756891.2015.1046325

Abdel-Basset, M., Manogaran, G., Gamal, A., & Smarandache, F. (2018). A hybrid approach of neutrosophic sets and DEMATEL method for developing supplier selection criteria. Design Automation for Embedded Systems, 22(3), 257-278. doi:10.1007/s10617-018-9203-6

Govindan, K., Khodaverdi, R., & Vafadarnikjoo, A. (2015). Intuitionistic fuzzy based DEMATEL method for developing green practices and performances in a green supply chain. Expert Systems with Applications, 42(20), 7207-7220. doi:10.1016/j.eswa.2015.04.030

Kou, G., & Lin, C. (2014). A cosine maximization method for the priority vector derivation in AHP. European Journal of Operational Research, 235(1), 225-232. doi:10.1016/j.ejor.2013.10.019

Ortiz-Barrios, M., Gul, M., López-Meza, P., Yucesan, M., & Navarro-Jiménez, E. (2020). Evaluation of hospital disaster preparedness by a multi-criteria decision making approach: The case of Turkish hospitals. International Journal of Disaster Risk Reduction, 49, 101748. doi:10.1016/j.ijdrr.2020.101748

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record