- -

A Hybrid Fuzzy Multi-criteria Decision Making Model to Evaluate the Overall Performance of Public Emergency Departments: A Case Study

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Hybrid Fuzzy Multi-criteria Decision Making Model to Evaluate the Overall Performance of Public Emergency Departments: A Case Study

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ortiz-Barrios, Miguel es_ES
dc.contributor.author Alfaro Saiz, Juan José es_ES
dc.date.accessioned 2021-07-16T03:31:04Z
dc.date.available 2021-07-16T03:31:04Z
dc.date.issued 2020-11 es_ES
dc.identifier.issn 0219-6220 es_ES
dc.identifier.uri http://hdl.handle.net/10251/169335
dc.description.abstract [EN] Performance evaluation is relevant for supporting managerial decisions related to the improvement of public emergency departments (EDs). As different criteria from ED context and several alternatives need to be considered, selecting a suitable Multicriteria Decision-Making (MCDM) approach has become a crucial step for ED performance evaluation. Although some methodologies have been proposed to address this challenge, a more complete approach is still lacking. This paper bridges this gap by integrating three potent MCDM methods. First, the Fuzzy Analytic Hierarchy Process (FAHP) is used to determine the criteria and sub-criteria weights under uncertainty, followed by the interdependence evaluation via fuzzy Decision-Making Trial and Evaluation Laboratory(FDEMATEL). The fuzzy logic is merged with AHP and DEMATEL to illustrate vague judgments. Finally, the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) is used for ranking EDs. This approach is validated in a real 3-ED cluster. The results revealed the critical role of Infrastructure (21.5%) in ED performance and the interactive nature of Patient safety (C+R =12.771). Furthermore, this paper evidences the weaknesses to be tackled for upgrading the performance of each ED. es_ES
dc.language Inglés es_ES
dc.publisher World Scientific es_ES
dc.relation.ispartof International Journal of Information Technology & Decision Making es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Emergency departments (EDs) es_ES
dc.subject Fuzzy AHP (FAHP) es_ES
dc.subject Fuzzy DEMATEL (FDEMATEL) es_ES
dc.subject TOPSIS es_ES
dc.subject Performance evaluation es_ES
dc.subject.classification ORGANIZACION DE EMPRESAS es_ES
dc.title A Hybrid Fuzzy Multi-criteria Decision Making Model to Evaluate the Overall Performance of Public Emergency Departments: A Case Study es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1142/S0219622020500364 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses es_ES
dc.description.bibliographicCitation Ortiz-Barrios, M.; Alfaro Saiz, JJ. (2020). A Hybrid Fuzzy Multi-criteria Decision Making Model to Evaluate the Overall Performance of Public Emergency Departments: A Case Study. International Journal of Information Technology & Decision Making. 19(6):1485-1548. https://doi.org/10.1142/S0219622020500364 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1142/S0219622020500364 es_ES
dc.description.upvformatpinicio 1485 es_ES
dc.description.upvformatpfin 1548 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 6 es_ES
dc.relation.pasarela S\418292 es_ES
dc.description.references Lord, K., Parwani, V., Ulrich, A., Finn, E. B., Rothenberg, C., Emerson, B., … Venkatesh, A. K. (2018). Emergency department boarding and adverse hospitalization outcomes among patients admitted to a general medical service. The American Journal of Emergency Medicine, 36(7), 1246-1248. doi:10.1016/j.ajem.2018.03.043 es_ES
dc.description.references Sørup, C. M., Jacobsen, P., & Forberg, J. L. (2013). Evaluation of emergency department performance – a systematic review on recommended performance and quality-in-care measures. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine, 21(1). doi:10.1186/1757-7241-21-62 es_ES
dc.description.references Farokhi, S., & Roghanian, E. (2018). Determining quantitative targets for performance measures in the balanced scorecard method using response surface methodology. Management Decision, 56(9), 2006-2037. doi:10.1108/md-08-2017-0772 es_ES
dc.description.references Ortiz Barrios, M. A., & Felizzola Jiménez, H. (2016). Use of Six Sigma Methodology to Reduce Appointment Lead-Time in Obstetrics Outpatient Department. Journal of Medical Systems, 40(10). doi:10.1007/s10916-016-0577-3 es_ES
dc.description.references Sunder M., V., Ganesh, L. S., & Marathe, R. R. (2018). A morphological analysis of research literature on Lean Six Sigma for services. International Journal of Operations & Production Management, 38(1), 149-182. doi:10.1108/ijopm-05-2016-0273 es_ES
dc.description.references Bergeron, B. P. (2017). Performance Management in Healthcare. doi:10.4324/9781315102214 es_ES
dc.description.references Santos, S. P., Belton, V., Howick, S., & Pilkington, M. (2018). Measuring organisational performance using a mix of OR methods. Technological Forecasting and Social Change, 131, 18-30. doi:10.1016/j.techfore.2017.07.028 es_ES
dc.description.references Ho, W., & Ma, X. (2018). The state-of-the-art integrations and applications of the analytic hierarchy process. European Journal of Operational Research, 267(2), 399-414. doi:10.1016/j.ejor.2017.09.007 es_ES
dc.description.references Dargi, A., Anjomshoae, A., Galankashi, M. R., Memari, A., & Tap, M. B. M. (2014). Supplier Selection: A Fuzzy-ANP Approach. Procedia Computer Science, 31, 691-700. doi:10.1016/j.procs.2014.05.317 es_ES
dc.description.references Jing, M., Jie, Y., Shou-yi, L., & Lu, W. (2015). Application of fuzzy analytic hierarchy process in the risk assessment of dangerous small-sized reservoirs. International Journal of Machine Learning and Cybernetics, 9(1), 113-123. doi:10.1007/s13042-015-0363-4 es_ES
dc.description.references Samanlioglu, F., Taskaya, Y. E., Gulen, U. C., & Cokcan, O. (2018). A Fuzzy AHP–TOPSIS-Based Group Decision-Making Approach to IT Personnel Selection. International Journal of Fuzzy Systems, 20(5), 1576-1591. doi:10.1007/s40815-018-0474-7 es_ES
dc.description.references CHEN, M.-F., TZENG, G.-H., & TANG, T.-I. (2005). FUZZY MCDM APPROACH FOR EVALUATION OF EXPATRIATE ASSIGNMENTS. International Journal of Information Technology & Decision Making, 04(02), 277-296. doi:10.1142/s0219622005001520 es_ES
dc.description.references Gul, M., Celik, E., Gumus, A. T., & Guneri, A. F. (2016). Emergency department performance evaluation by an integrated simulation and interval type-2 fuzzy MCDM-based scenario analysis. European J. of Industrial Engineering, 10(2), 196. doi:10.1504/ejie.2016.075846 es_ES
dc.description.references Jovčić, Průša, Dobrodolac, & Švadlenka. (2019). A Proposal for a Decision-Making Tool in Third-Party Logistics (3PL) Provider Selection Based on Multi-Criteria Analysis and the Fuzzy Approach. Sustainability, 11(15), 4236. doi:10.3390/su11154236 es_ES
dc.description.references Saaty, T. L., & Vargas, L. G. (2012). Models, Methods, Concepts & Applications of the Analytic Hierarchy Process. International Series in Operations Research & Management Science. doi:10.1007/978-1-4614-3597-6 es_ES
dc.description.references Vargas, L. G. (2016). Voting with Intensity of Preferences. International Journal of Information Technology & Decision Making, 15(04), 839-859. doi:10.1142/s0219622016400058 es_ES
dc.description.references Lee, K.-C., Tsai, W.-H., Yang, C.-H., & Lin, Y.-Z. (2018). An MCDM approach for selecting green aviation fleet program management strategies under multi-resource limitations. Journal of Air Transport Management, 68, 76-85. doi:10.1016/j.jairtraman.2017.06.011 es_ES
dc.description.references Labib, A., & Read, M. (2015). A hybrid model for learning from failures: The Hurricane Katrina disaster. Expert Systems with Applications, 42(21), 7869-7881. doi:10.1016/j.eswa.2015.06.020 es_ES
dc.description.references Hosseini, S., & Khaled, A. A. (2016). A hybrid ensemble and AHP approach for resilient supplier selection. Journal of Intelligent Manufacturing, 30(1), 207-228. doi:10.1007/s10845-016-1241-y es_ES
dc.description.references Zavadskas, E. K., Govindan, K., Antucheviciene, J., & Turskis, Z. (2016). Hybrid multiple criteria decision-making methods: a review of applications for sustainability issues. Economic Research-Ekonomska Istraživanja, 29(1), 857-887. doi:10.1080/1331677x.2016.1237302 es_ES
dc.description.references Lolli, F., Balugani, E., Ishizaka, A., Gamberini, R., Butturi, M. A., Marinello, S., & Rimini, B. (2019). On the elicitation of criteria weights in PROMETHEE-based ranking methods for a mobile application. Expert Systems with Applications, 120, 217-227. doi:10.1016/j.eswa.2018.11.030 es_ES
dc.description.references De Almeida Filho, A. T., Clemente, T. R. N., Morais, D. C., & de Almeida, A. T. (2018). Preference modeling experiments with surrogate weighting procedures for the PROMETHEE method. European Journal of Operational Research, 264(2), 453-461. doi:10.1016/j.ejor.2017.08.006 es_ES
dc.description.references Sun, G., Guan, X., Yi, X., & Zhou, Z. (2018). An innovative TOPSIS approach based on hesitant fuzzy correlation coefficient and its applications. Applied Soft Computing, 68, 249-267. doi:10.1016/j.asoc.2018.04.004 es_ES
dc.description.references Frazão, T. D. C., Camilo, D. G. G., Cabral, E. L. S., & Souza, R. P. (2018). Multicriteria decision analysis (MCDA) in health care: a systematic review of the main characteristics and methodological steps. BMC Medical Informatics and Decision Making, 18(1). doi:10.1186/s12911-018-0663-1 es_ES
dc.description.references Ortiz-Barrios, M. A., Herrera-Fontalvo, Z., Rúa-Muñoz, J., Ojeda-Gutiérrez, S., De Felice, F., & Petrillo, A. (2018). An integrated approach to evaluate the risk of adverse events in hospital sector. Management Decision, 56(10), 2187-2224. doi:10.1108/md-09-2017-0917 es_ES
dc.description.references Al Salem, A. A., & Awasthi, A. (2018). Investigating rank reversal in reciprocal fuzzy preference relation based on additive consistency: Causes and solutions. Computers & Industrial Engineering, 115, 573-581. doi:10.1016/j.cie.2017.11.027 es_ES
dc.description.references Aires, R. F. de F., & Ferreira, L. (2019). A new approach to avoid rank reversal cases in the TOPSIS method. Computers & Industrial Engineering, 132, 84-97. doi:10.1016/j.cie.2019.04.023 es_ES
dc.description.references Emrouznejad, A., & Yang, G. (2018). A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016. Socio-Economic Planning Sciences, 61, 4-8. doi:10.1016/j.seps.2017.01.008 es_ES
dc.description.references Arya, A., & Yadav, S. P. (2017). Development of FDEA Models to Measure the Performance Efficiencies of DMUs. International Journal of Fuzzy Systems, 20(1), 163-173. doi:10.1007/s40815-017-0325-y es_ES
dc.description.references Mufazzal, S., & Muzakkir, S. M. (2018). A new multi-criterion decision making (MCDM) method based on proximity indexed value for minimizing rank reversals. Computers & Industrial Engineering, 119, 427-438. doi:10.1016/j.cie.2018.03.045 es_ES
dc.description.references Kaliszewski, I., & Podkopaev, D. (2016). Simple additive weighting—A metamodel for multiple criteria decision analysis methods. Expert Systems with Applications, 54, 155-161. doi:10.1016/j.eswa.2016.01.042 es_ES
dc.description.references Mousavi-Nasab, S. H., & Sotoudeh-Anvari, A. (2018). A new multi-criteria decision making approach for sustainable material selection problem: A critical study on rank reversal problem. Journal of Cleaner Production, 182, 466-484. doi:10.1016/j.jclepro.2018.02.062 es_ES
dc.description.references Chen, Z., Ming, X., Zhang, X., Yin, D., & Sun, Z. (2019). A rough-fuzzy DEMATEL-ANP method for evaluating sustainable value requirement of product service system. Journal of Cleaner Production, 228, 485-508. doi:10.1016/j.jclepro.2019.04.145 es_ES
dc.description.references Jumaah, F. M., Zadain, A. A., Zaidan, B. B., Hamzah, A. K., & Bahbibi, R. (2018). Decision-making solution based multi-measurement design parameter for optimization of GPS receiver tracking channels in static and dynamic real-time positioning multipath environment. Measurement, 118, 83-95. doi:10.1016/j.measurement.2018.01.011 es_ES
dc.description.references Singh, A., & Prasher, A. (2017). Measuring healthcare service quality from patients’ perspective: using Fuzzy AHP application. Total Quality Management & Business Excellence, 30(3-4), 284-300. doi:10.1080/14783363.2017.1302794 es_ES
dc.description.references Otay, İ., Oztaysi, B., Cevik Onar, S., & Kahraman, C. (2017). Multi-expert performance evaluation of healthcare institutions using an integrated intuitionistic fuzzy AHP&DEA methodology. Knowledge-Based Systems, 133, 90-106. doi:10.1016/j.knosys.2017.06.028 es_ES
dc.description.references Awasthi, A., Govindan, K., & Gold, S. (2018). Multi-tier sustainable global supplier selection using a fuzzy AHP-VIKOR based approach. International Journal of Production Economics, 195, 106-117. doi:10.1016/j.ijpe.2017.10.013 es_ES
dc.description.references Gul, M., Guneri, A. F., & Nasirli, S. M. (2018). A fuzzy-based model for risk assessment of routes in oil transportation. International Journal of Environmental Science and Technology, 16(8), 4671-4686. doi:10.1007/s13762-018-2078-z es_ES
dc.description.references Kazancoglu, Y., Kazancoglu, I., & Sagnak, M. (2018). Fuzzy DEMATEL-based green supply chain management performance. Industrial Management & Data Systems, 118(2), 412-431. doi:10.1108/imds-03-2017-0121 es_ES
dc.description.references Abdullah, L., & Zulkifli, N. (2015). Integration of fuzzy AHP and interval type-2 fuzzy DEMATEL: An application to human resource management. Expert Systems with Applications, 42(9), 4397-4409. doi:10.1016/j.eswa.2015.01.021 es_ES
dc.description.references Ashtiani, M., & Azgomi, M. A. (2016). A hesitant fuzzy model of computational trust considering hesitancy, vagueness and uncertainty. Applied Soft Computing, 42, 18-37. doi:10.1016/j.asoc.2016.01.023 es_ES
dc.description.references Zyoud, S. H., & Fuchs-Hanusch, D. (2017). A bibliometric-based survey on AHP and TOPSIS techniques. Expert Systems with Applications, 78, 158-181. doi:10.1016/j.eswa.2017.02.016 es_ES
dc.description.references Scholz, S., Ngoli, B., & Flessa, S. (2015). Rapid assessment of infrastructure of primary health care facilities – a relevant instrument for health care systems management. BMC Health Services Research, 15(1). doi:10.1186/s12913-015-0838-8 es_ES
dc.description.references Ivlev, I., Vacek, J., & Kneppo, P. (2015). Multi-criteria decision analysis for supporting the selection of medical devices under uncertainty. European Journal of Operational Research, 247(1), 216-228. doi:10.1016/j.ejor.2015.05.075 es_ES
dc.description.references Kovacs, E., Strobl, R., Phillips, A., Stephan, A.-J., Müller, M., Gensichen, J., & Grill, E. (2018). Systematic Review and Meta-analysis of the Effectiveness of Implementation Strategies for Non-communicable Disease Guidelines in Primary Health Care. Journal of General Internal Medicine, 33(7), 1142-1154. doi:10.1007/s11606-018-4435-5 es_ES
dc.description.references Morley, C., Unwin, M., Peterson, G. M., Stankovich, J., & Kinsman, L. (2018). Emergency department crowding: A systematic review of causes, consequences and solutions. PLOS ONE, 13(8), e0203316. doi:10.1371/journal.pone.0203316 es_ES
dc.description.references Hermann, R. M., Long, E., & Trotta, R. L. (2019). Improving Patients’ Experiences Communicating With Nurses and Providers in the Emergency Department. Journal of Emergency Nursing, 45(5), 523-530. doi:10.1016/j.jen.2018.12.001 es_ES
dc.description.references Hawley, K. L., Mazer-Amirshahi, M., Zocchi, M. S., Fox, E. R., & Pines, J. M. (2015). Longitudinal Trends in U.S. Drug Shortages for Medications Used in Emergency Departments (2001-2014). Academic Emergency Medicine, 23(1), 63-69. doi:10.1111/acem.12838 es_ES
dc.description.references Stang, A. S., Crotts, J., Johnson, D. W., Hartling, L., & Guttmann, A. (2015). Crowding Measures Associated With the Quality of Emergency Department Care: A Systematic Review. Academic Emergency Medicine, 22(6), 643-656. doi:10.1111/acem.12682 es_ES
dc.description.references Chanamool, N., & Naenna, T. (2016). Fuzzy FMEA application to improve decision-making process in an emergency department. Applied Soft Computing, 43, 441-453. doi:10.1016/j.asoc.2016.01.007 es_ES
dc.description.references Farup, P. G. (2015). Are measurements of patient safety culture and adverse events valid and reliable? Results from a cross sectional study. BMC Health Services Research, 15(1). doi:10.1186/s12913-015-0852-x es_ES
dc.description.references Carter, E. J., Pouch, S. M., & Larson, E. L. (2013). The Relationship Between Emergency Department Crowding and Patient Outcomes: A Systematic Review. Journal of Nursing Scholarship, 46(2), 106-115. doi:10.1111/jnu.12055 es_ES
dc.description.references Ebben, R. H. A., Siqeca, F., Madsen, U. R., Vloet, L. C. M., & van Achterberg, T. (2018). Effectiveness of implementation strategies for the improvement of guideline and protocol adherence in emergency care: a systematic review. BMJ Open, 8(11), e017572. doi:10.1136/bmjopen-2017-017572 es_ES
dc.description.references Innes, G. D., Sivilotti, M. L. A., Ovens, H., McLelland, K., Dukelow, A., Kwok, E., … Chochinov, A. (2018). Emergency overcrowding and access block: A smaller problem than we think. CJEM, 21(2), 177-185. doi:10.1017/cem.2018.446 es_ES
dc.description.references Di Somma, S., Paladino, L., Vaughan, L., Lalle, I., Magrini, L., & Magnanti, M. (2014). Overcrowding in emergency department: an international issue. Internal and Emergency Medicine, 10(2), 171-175. doi:10.1007/s11739-014-1154-8 es_ES
dc.description.references Uthman, O. A., Walker, C., Lahiri, S., Jenkinson, D., Adekanmbi, V., Robertson, W., & Clarke, A. (2018). General practitioners providing non-urgent care in emergency department: a natural experiment. BMJ Open, 8(5), e019736. doi:10.1136/bmjopen-2017-019736 es_ES
dc.description.references Razzak, J. A., Baqir, S. M., Khan, U. R., Heller, D., Bhatti, J., & Hyder, A. A. (2013). Emergency and trauma care in Pakistan: a cross-sectional study of healthcare levels. Emergency Medicine Journal, 32(3), 207-213. doi:10.1136/emermed-2013-202590 es_ES
dc.description.references Dart, R. C., Goldfrank, L. R., Erstad, B. L., Huang, D. T., Todd, K. H., Weitz, J., … Anderson, V. E. (2018). Expert Consensus Guidelines for Stocking of Antidotes in Hospitals That Provide Emergency Care. Annals of Emergency Medicine, 71(3), 314-325.e1. doi:10.1016/j.annemergmed.2017.05.021 es_ES
dc.description.references Mkoka, D. A., Goicolea, I., Kiwara, A., Mwangu, M., & Hurtig, A.-K. (2014). Availability of drugs and medical supplies for emergency obstetric care: experience of health facility managers in a rural District of Tanzania. BMC Pregnancy and Childbirth, 14(1). doi:10.1186/1471-2393-14-108 es_ES
dc.description.references Beck, M. J., Okerblom, D., Kumar, A., Bandyopadhyay, S., & Scalzi, L. V. (2016). Lean intervention improves patient discharge times, improves emergency department throughput and reduces congestion. Hospital Practice, 44(5), 252-259. doi:10.1080/21548331.2016.1254559 es_ES
dc.description.references Morais Oliveira, M., Marti, C., Ramlawi, M., Sarasin, F. P., Grosgurin, O., Poletti, P.-A., … Rutschmann, O. T. (2018). Impact of a patient-flow physician coordinator on waiting times and length of stay in an emergency department: A before-after cohort study. PLOS ONE, 13(12), e0209035. doi:10.1371/journal.pone.0209035 es_ES
dc.description.references Vermeulen, M. J., Stukel, T. A., Boozary, A. S., Guttmann, A., & Schull, M. J. (2016). The Effect of Pay for Performance in the Emergency Department on Patient Waiting Times and Quality of Care in Ontario, Canada: A Difference-in-Differences Analysis. Annals of Emergency Medicine, 67(4), 496-505.e7. doi:10.1016/j.annemergmed.2015.06.028 es_ES
dc.description.references Singh, S., Lin, Y.-L., Nattinger, A. B., Kuo, Y.-F., & Goodwin, J. S. (2015). Variation in readmission rates by emergency departments and emergency department providers caring for patients after discharge. Journal of Hospital Medicine, 10(11), 705-710. doi:10.1002/jhm.2407 es_ES
dc.description.references Källberg, A.-S., Göransson, K. E., Florin, J., Östergren, J., Brixey, J. J., & Ehrenberg, A. (2015). Contributing factors to errors in Swedish emergency departments. International Emergency Nursing, 23(2), 156-161. doi:10.1016/j.ienj.2014.10.002 es_ES
dc.description.references Riga, M., Vozikis, A., Pollalis, Y., & Souliotis, K. (2015). MERIS (Medical Error Reporting Information System) as an innovative patient safety intervention: A health policy perspective. Health Policy, 119(4), 539-548. doi:10.1016/j.healthpol.2014.12.006 es_ES
dc.description.references Norman, G. R., Monteiro, S. D., Sherbino, J., Ilgen, J. S., Schmidt, H. G., & Mamede, S. (2017). The Causes of Errors in Clinical Reasoning. Academic Medicine, 92(1), 23-30. doi:10.1097/acm.0000000000001421 es_ES
dc.description.references Lisbon, D., Allin, D., Cleek, C., Roop, L., Brimacombe, M., Downes, C., & Pingleton, S. K. (2014). Improved Knowledge, Attitudes, and Behaviors After Implementation of TeamSTEPPS Training in an Academic Emergency Department. American Journal of Medical Quality, 31(1), 86-90. doi:10.1177/1062860614545123 es_ES
dc.description.references Li, L., Georgiou, A., Vecellio, E., Eigenstetter, A., Toouli, G., Wilson, R., & Westbrook, J. I. (2015). The Effect of Laboratory Testing on Emergency Department Length of Stay: A Multihospital Longitudinal Study Applying a Cross‐classified Random‐effect Modeling Approach. Academic Emergency Medicine, 22(1), 38-46. doi:10.1111/acem.12565 es_ES
dc.description.references Telem, D. A., Yang, J., Altieri, M., Patterson, W., Peoples, B., Chen, H., … Pryor, A. D. (2016). Rates and Risk Factors for Unplanned Emergency Department Utilization and Hospital Readmission Following Bariatric Surgery. Annals of Surgery, 263(5), 956-960. doi:10.1097/sla.0000000000001536 es_ES
dc.description.references Rigobello, M. C. G., Carvalho, R. E. F. L. de, Guerreiro, J. M., Motta, A. P. G., Atila, E., & Gimenes, F. R. E. (2017). The perception of the patient safety climate by professionals of the emergency department. International Emergency Nursing, 33, 1-6. doi:10.1016/j.ienj.2017.03.003 es_ES
dc.description.references Farmer, B. (2016). Patient Safety in the Emergency Department. Emergency Medicine, 48(9), 396-404. doi:10.12788/emed.2016.0052 es_ES
dc.description.references Liu, H.-C., You, J.-X., Zhen, L., & Fan, X.-J. (2014). A novel hybrid multiple criteria decision making model for material selection with target-based criteria. Materials & Design, 60, 380-390. doi:10.1016/j.matdes.2014.03.071 es_ES
dc.description.references Kou, G., Ergu, D., & Shang, J. (2014). Enhancing data consistency in decision matrix: Adapting Hadamard model to mitigate judgment contradiction. European Journal of Operational Research, 236(1), 261-271. doi:10.1016/j.ejor.2013.11.035 es_ES
dc.description.references Keshavarz Ghorabaee, M., Amiri, M., Zavadskas, E. K., & Antucheviciene, J. (2017). Supplier evaluation and selection in fuzzy environments: a review of MADM approaches. Economic Research-Ekonomska Istraživanja, 30(1), 1073-1118. doi:10.1080/1331677x.2017.1314828 es_ES
dc.description.references Barrios, M. A. O., De Felice, F., Negrete, K. P., Romero, B. A., Arenas, A. Y., & Petrillo, A. (2016). An AHP-Topsis Integrated Model for Selecting the Most Appropriate Tomography Equipment. International Journal of Information Technology & Decision Making, 15(04), 861-885. doi:10.1142/s021962201640006x es_ES
dc.description.references Yeh, D.-Y., & Cheng, C.-H. (2016). Performance Management of Taiwan’s National Hospitals. International Journal of Information Technology & Decision Making, 15(01), 187-213. doi:10.1142/s0219622014500199 es_ES
dc.description.references Chen, T.-Y. (2014). An Interactive Signed Distance Approach for Multiple Criteria Group Decision-Making Based on Simple Additive Weighting Method with Incomplete Preference Information Defined by Interval Type-2 Fuzzy Sets. International Journal of Information Technology & Decision Making, 13(05), 979-1012. doi:10.1142/s0219622014500229 es_ES
dc.description.references Gou, X., Xu, Z., & Liao, H. (2019). Hesitant Fuzzy Linguistic Possibility Degree-Based Linear Assignment Method for Multiple Criteria Decision-Making. International Journal of Information Technology & Decision Making, 18(01), 35-63. doi:10.1142/s0219622017500377 es_ES
dc.description.references Saksrisathaporn, K., Bouras, A., Reeveerakul, N., & Charles, A. (2016). Application of a Decision Model by Using an Integration of AHP and TOPSIS Approaches within Humanitarian Operation Life Cycle. International Journal of Information Technology & Decision Making, 15(04), 887-918. doi:10.1142/s0219622015500261 es_ES
dc.description.references Hsiao, B., & Chen, L.-H. (2019). Performance Evaluation for Taiwanese Hospitals by Multi-Activity Network Data Envelopment Analysis. International Journal of Information Technology & Decision Making, 18(03), 1009-1043. doi:10.1142/s0219622018500165 es_ES
dc.description.references Saaty, T. L., & Ergu, D. (2015). When is a Decision-Making Method Trustworthy? Criteria for Evaluating Multi-Criteria Decision-Making Methods. International Journal of Information Technology & Decision Making, 14(06), 1171-1187. doi:10.1142/s021962201550025x es_ES
dc.description.references Chang, K.-H., Chang, Y.-C., & Lee, Y.-T. (2014). Integrating TOPSIS and DEMATEL Methods to Rank the Risk of Failure of FMEA. International Journal of Information Technology & Decision Making, 13(06), 1229-1257. doi:10.1142/s0219622014500758 es_ES
dc.description.references Yeh, T.-M., & Huang, Y.-L. (2014). Factors in determining wind farm location: Integrating GQM, fuzzy DEMATEL, and ANP. Renewable Energy, 66, 159-169. doi:10.1016/j.renene.2013.12.003 es_ES
dc.description.references Ortíz, M. A., Felizzola, H. A., & Isaza, S. N. (2015). A contrast between DEMATEL-ANP and ANP methods for six sigma project selection: a case study in healthcare industry. BMC Medical Informatics and Decision Making, 15(S3). doi:10.1186/1472-6947-15-s3-s3 es_ES
dc.description.references Deveci, M., Canıtez, F., & Gökaşar, I. (2018). WASPAS and TOPSIS based interval type-2 fuzzy MCDM method for a selection of a car sharing station. Sustainable Cities and Society, 41, 777-791. doi:10.1016/j.scs.2018.05.034 es_ES
dc.description.references Roy, J., Sharma, H. K., Kar, S., Zavadskas, E. K., & Saparauskas, J. (2019). An extended COPRAS model for multi-criteria decision-making problems and its application in web-based hotel evaluation and selection. Economic Research-Ekonomska Istraživanja, 32(1), 219-253. doi:10.1080/1331677x.2018.1543054 es_ES
dc.description.references Keshavarz Ghorabaee, M., Amiri, M., Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. (2017). A new multi-criteria model based on interval type-2 fuzzy sets and EDAS method for supplier evaluation and order allocation with environmental considerations. Computers & Industrial Engineering, 112, 156-174. doi:10.1016/j.cie.2017.08.017 es_ES
dc.description.references Keshavarz Ghorabaee, M., Zavadskas, E. K., Olfat, L., & Turskis, Z. (2015). Multi-Criteria Inventory Classification Using a New Method of Evaluation Based on Distance from Average Solution (EDAS). Informatica, 26(3), 435-451. doi:10.15388/informatica.2015.57 es_ES
dc.description.references Kahraman, C., Onar, S. C., & Oztaysi, B. (2015). Fuzzy Multicriteria Decision-Making: A Literature Review. International Journal of Computational Intelligence Systems, 8(4), 637. doi:10.1080/18756891.2015.1046325 es_ES
dc.description.references Abdel-Basset, M., Manogaran, G., Gamal, A., & Smarandache, F. (2018). A hybrid approach of neutrosophic sets and DEMATEL method for developing supplier selection criteria. Design Automation for Embedded Systems, 22(3), 257-278. doi:10.1007/s10617-018-9203-6 es_ES
dc.description.references Govindan, K., Khodaverdi, R., & Vafadarnikjoo, A. (2015). Intuitionistic fuzzy based DEMATEL method for developing green practices and performances in a green supply chain. Expert Systems with Applications, 42(20), 7207-7220. doi:10.1016/j.eswa.2015.04.030 es_ES
dc.description.references Kou, G., & Lin, C. (2014). A cosine maximization method for the priority vector derivation in AHP. European Journal of Operational Research, 235(1), 225-232. doi:10.1016/j.ejor.2013.10.019 es_ES
dc.description.references Ortiz-Barrios, M., Gul, M., López-Meza, P., Yucesan, M., & Navarro-Jiménez, E. (2020). Evaluation of hospital disaster preparedness by a multi-criteria decision making approach: The case of Turkish hospitals. International Journal of Disaster Risk Reduction, 49, 101748. doi:10.1016/j.ijdrr.2020.101748 es_ES
dc.subject.ods 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem