Mostrar el registro sencillo del ítem
dc.contributor.author | Desantes Fernández, José Mª | es_ES |
dc.contributor.author | García-Oliver, José M | es_ES |
dc.contributor.author | Pastor Enguídanos, José Manuel | es_ES |
dc.contributor.author | Olmeda-Ramiro, Iván | es_ES |
dc.contributor.author | Pandal, A. | es_ES |
dc.contributor.author | Naud, B. | es_ES |
dc.date.accessioned | 2021-07-16T03:31:27Z | |
dc.date.available | 2021-07-16T03:31:27Z | |
dc.date.issued | 2020-06 | es_ES |
dc.identifier.issn | 0301-9322 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/169345 | |
dc.description.abstract | [EN] Engine fuel spray modeling still remains a challenge, especially in the dense near-nozzle region. This region is difficult to experimentally access and also to model due to the complex and rapid liquid and gas interaction. Modeling approaches based on Lagrangian particle tracking have failed in this area, while Eulerian modeling has proven to be particularly useful. Interface resolved methods are still limited to primary atomization academic configurations due to excessive computational requirements. To overcome those limitations, the single-fluid diffuse interface model known as Sigma-Y, arises as a single-framework for spray simulations. Under the assumption of scale separation at high Reynolds and Weber numbers, liquid dispersion is modeled as turbulent mixing of a variable density flow. The concept of surface area density is used for representing liquid structures, regardless of the complexity of the interface. In this work, a LES based implementation of the Sigma-Y model in the OpenFOAM CFD library is applied to simulate the ECN Spray A configuration. Model assessment is performed for both near- and far-field spray development regions using different experimental diagnostics available from ECN database. The CFD model is able to capture near-nozzle fuel mass distribution and, after Sigma equation constant calibration, interfacial surface area. Accurate predictions of spray far-field evolution in terms of liquid and vapor tip penetration and local velocity can be simultaneously achieved. Model accuracy is lower when compared to mixture fraction axial evolution, despite radial distribution profiles are well captured. | es_ES |
dc.description.sponsorship | This work was partially funded by the Spanish Ministerio de Economia y Competitividad within the frame of the CHEST (TRA2017-89139-C2-1-R) project. The computations were partially performed on the Tirant III cluster of the Servei d'Informatica of the University of Valencia (vlc38-FI-2018-2-0006). Authors acknowledge the computer resources at Picasso and the technical support provided by Universidad de Malaga (UMA) (RES-FI-2018-1-0039). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | International Journal of Multiphase Flow | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Large eddy simulation | es_ES |
dc.subject | Eulerian | es_ES |
dc.subject | Diesel spray | es_ES |
dc.subject | Atomization | es_ES |
dc.subject | Engine Combustion Network (ECN) | es_ES |
dc.subject | OpenFOAM | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | LES Eulerian diffuse-interface modeling of fuel dense sprays near- and far-field | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.ijmultiphaseflow.2020.103272 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UMA//RES-FI-2018-1-0039/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TRA2017-89139-C2-1-R/ES/DESARROLLO DE MODELOS DE COMBUSTION Y EMISIONES HPC PARA EL ANALISIS DE PLANTAS PROPULSIVAS DE TRANSPORTE SOSTENIBLES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics | es_ES |
dc.description.bibliographicCitation | Desantes Fernández, JM.; García-Oliver, JM.; Pastor Enguídanos, JM.; Olmeda-Ramiro, I.; Pandal, A.; Naud, B. (2020). LES Eulerian diffuse-interface modeling of fuel dense sprays near- and far-field. International Journal of Multiphase Flow. 127:1-13. https://doi.org/10.1016/j.ijmultiphaseflow.2020.103272 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.ijmultiphaseflow.2020.103272 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 13 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 127 | es_ES |
dc.relation.pasarela | S\408265 | es_ES |
dc.contributor.funder | Universidad de Málaga | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Andreini, A., Bianchini, C., Puggelli, S., & Demoulin, F. X. (2016). Development of a turbulent liquid flux model for Eulerian–Eulerian multiphase flow simulations. International Journal of Multiphase Flow, 81, 88-103. doi:10.1016/j.ijmultiphaseflow.2016.02.003 | es_ES |
dc.description.references | Anez, J., Ahmed, A., Hecht, N., Duret, B., Reveillon, J., & Demoulin, F. X. (2019). Eulerian–Lagrangian spray atomization model coupled with interface capturing method for diesel injectors. International Journal of Multiphase Flow, 113, 325-342. doi:10.1016/j.ijmultiphaseflow.2018.10.009 | es_ES |
dc.description.references | Baldwin, E. T., Grover, R. O., Parrish, S. E., Duke, D. J., Matusik, K. E., Powell, C. F., … Schmidt, D. P. (2016). String flash-boiling in gasoline direct injection simulations with transient needle motion. International Journal of Multiphase Flow, 87, 90-101. doi:10.1016/j.ijmultiphaseflow.2016.09.004 | es_ES |
dc.description.references | Bardi, M., Payri, R., Malbec, L. M., Bruneaux, G., Pickett, L. M., Manin, J., … Genzale, C. (2012). ENGINE COMBUSTION NETWORK: COMPARISON OF SPRAY DEVELOPMENT, VAPORIZATION, AND COMBUSTION IN DIFFERENT COMBUSTION VESSELS. Atomization and Sprays, 22(10), 807-842. doi:10.1615/atomizspr.2013005837 | es_ES |
dc.description.references | Battistoni, M., Som, S., & Powell, C. F. (2019). Highly resolved Eulerian simulations of fuel spray transients in single and multi-hole injectors: Nozzle flow and near-exit dynamics. Fuel, 251, 709-729. doi:10.1016/j.fuel.2019.04.076 | es_ES |
dc.description.references | Beheshti, N., Burluka, A. A., & Fairweather, M. (2007). Assessment of Σ−Y liq model predictions for air-assisted atomisation. Theoretical and Computational Fluid Dynamics, 21(5), 381-397. doi:10.1007/s00162-007-0052-3 | es_ES |
dc.description.references | Chesnel, J., Reveillon, J., Menard, T., & Demoulin, F.-X. (2011). LARGE EDDY SIMULATION OF LIQUID JET ATOMIZATION. Atomization and Sprays, 21(9), 711-736. doi:10.1615/atomizspr.2012003740 | es_ES |
dc.description.references | CMT, 2018. Virtual injection rate generator. | es_ES |
dc.description.references | Crua, C., Heikal, M. R., & Gold, M. R. (2015). Microscopic imaging of the initial stage of diesel spray formation. Fuel, 157, 140-150. doi:10.1016/j.fuel.2015.04.041 | es_ES |
dc.description.references | Crua, C., Manin, J., & Pickett, L. M. (2017). On the transcritical mixing of fuels at diesel engine conditions. Fuel, 208, 535-548. doi:10.1016/j.fuel.2017.06.091 | es_ES |
dc.description.references | Dahms, R. N., Manin, J., Pickett, L. M., & Oefelein, J. C. (2013). Understanding high-pressure gas-liquid interface phenomena in Diesel engines. Proceedings of the Combustion Institute, 34(1), 1667-1675. doi:10.1016/j.proci.2012.06.169 | es_ES |
dc.description.references | Demoulin, F.-X., Beau, P.-A., Blokkeel, G., Mura, A., & Borghi, R. (2007). A NEW MODEL FOR TURBULENT FLOWS WITH LARGE DENSITY FLUCTUATIONS: APPLICATION TO LIQUID ATOMIZATION. Atomization and Sprays, 17(4), 315-345. doi:10.1615/atomizspr.v17.i4.20 | es_ES |
dc.description.references | Demoulin, F.-X., Reveillon, J., Duret, B., Bouali, Z., Desjonqueres, P., & Menard, T. (2013). TOWARD USING DIRECT NUMERICAL SIMULATION TO IMPROVE PRIMARY BREAK-UP MODELING. Atomization and Sprays, 23(11), 957-980. doi:10.1615/atomizspr.2013007439 | es_ES |
dc.description.references | Desantes, J. M., García-Oliver, J. M., Pastor, J. M., Pandal, A., Baldwin, E., & Schmidt, D. P. (2016). Coupled/decoupled spray simulation comparison of the ECN spray a condition with the -Y Eulerian atomization model. International Journal of Multiphase Flow, 80, 89-99. doi:10.1016/j.ijmultiphaseflow.2015.12.002 | es_ES |
dc.description.references | Dukowicz, J. K. (1980). A particle-fluid numerical model for liquid sprays. Journal of Computational Physics, 35(2), 229-253. doi:10.1016/0021-9991(80)90087-x | es_ES |
dc.description.references | Duret, B., Reveillon, J., Menard, T., & Demoulin, F. X. (2013). Improving primary atomization modeling through DNS of two-phase flows. International Journal of Multiphase Flow, 55, 130-137. doi:10.1016/j.ijmultiphaseflow.2013.05.004 | es_ES |
dc.description.references | ECN, 2014. LVF data archive. | es_ES |
dc.description.references | ECN, 2018. Engine combustion network data archive. | es_ES |
dc.description.references | Garcia-Oliver, J. M., Pastor, J. M., Pandal, A., Trask, N., Baldwin, E., & Schmidt, D. P. (2013). DIESEL SPRAY CFD SIMULATIONS BASED ON THE Σ-Υ EULERIAN ATOMIZATION MODEL. Atomization and Sprays, 23(1), 71-95. doi:10.1615/atomizspr.2013007198 | es_ES |
dc.description.references | Gorokhovski, M., & Herrmann, M. (2008). Modeling Primary Atomization. Annual Review of Fluid Mechanics, 40(1), 343-366. doi:10.1146/annurev.fluid.40.111406.102200 | es_ES |
dc.description.references | Hussein, H. J., Capp, S. P., & George, W. K. (1994). Velocity measurements in a high-Reynolds-number, momentum-conserving, axisymmetric, turbulent jet. Journal of Fluid Mechanics, 258, 31-75. doi:10.1017/s002211209400323x | es_ES |
dc.description.references | Ilavsky, J., & Jemian, P. R. (2009). Irena: tool suite for modeling and analysis of small-angle scattering. Journal of Applied Crystallography, 42(2), 347-353. doi:10.1107/s0021889809002222 | es_ES |
dc.description.references | Jasak, H., Weller, H. G., & Gosman, A. D. (1999). High resolution NVD differencing scheme for arbitrarily unstructured meshes. International Journal for Numerical Methods in Fluids, 31(2), 431-449. doi:10.1002/(sici)1097-0363(19990930)31:2<431::aid-fld884>3.0.co;2-t | es_ES |
dc.description.references | Kastengren, A., Ilavsky, J., Viera, J. P., Payri, R., Duke, D. J., Swantek, A., … Powell, C. F. (2017). Measurements of droplet size in shear-driven atomization using ultra-small angle x-ray scattering. International Journal of Multiphase Flow, 92, 131-139. doi:10.1016/j.ijmultiphaseflow.2017.03.005 | es_ES |
dc.description.references | Kastengren, A. L., Tilocco, F. Z., Powell, C. F., Manin, J., Pickett, L. M., Payri, R., & Bazyn, T. (2012). ENGINE COMBUSTION NETWORK (ECN): MEASUREMENTS OF NOZZLE GEOMETRY AND HYDRAULIC BEHAVIOR. Atomization and Sprays, 22(12), 1011-1052. doi:10.1615/atomizspr.2013006309 | es_ES |
dc.description.references | Kastengren, A. L., Tilocco,F. Z., Duke, D. J., Powell, C. F., Seoksu, M., Xusheng, Z., 2012b. Time-resolved x-ray radiography of diesel injectors from the engine combustion network. ICLASS Paper (1369). | es_ES |
dc.description.references | Kastengren, A. L., Powell, C. F., Wang, Y., Im, K.-S., & Wang, J. (2009). X-RAY RADIOGRAPHY MEASUREMENTS OF DIESEL SPRAY STRUCTURE AT ENGINE-LIKE AMBIENT DENSITY. Atomization and Sprays, 19(11), 1031-1044. doi:10.1615/atomizspr.v19.i11.30 | es_ES |
dc.description.references | Klein, M., Sadiki, A., & Janicka, J. (2003). A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. Journal of Computational Physics, 186(2), 652-665. doi:10.1016/s0021-9991(03)00090-1 | es_ES |
dc.description.references | Kraichnan, R. H. (1970). Diffusion by a Random Velocity Field. Physics of Fluids, 13(1), 22. doi:10.1063/1.1692799 | es_ES |
dc.description.references | Lacaze, G., Misdariis, A., Ruiz, A., & Oefelein, J. C. (2015). Analysis of high-pressure Diesel fuel injection processes using LES with real-fluid thermodynamics and transport. Proceedings of the Combustion Institute, 35(2), 1603-1611. doi:10.1016/j.proci.2014.06.072 | es_ES |
dc.description.references | Lebas, R., Menard, T., Beau, P. A., Berlemont, A., & Demoulin, F. X. (2009). Numerical simulation of primary break-up and atomization: DNS and modelling study. International Journal of Multiphase Flow, 35(3), 247-260. doi:10.1016/j.ijmultiphaseflow.2008.11.005 | es_ES |
dc.description.references | Ma, P. C., Wu, H., Jaravel, T., Bravo, L., & Ihme, M. (2019). Large-eddy simulations of transcritical injection and auto-ignition using diffuse-interface method and finite-rate chemistry. Proceedings of the Combustion Institute, 37(3), 3303-3310. doi:10.1016/j.proci.2018.05.063 | es_ES |
dc.description.references | Macian, V., Bermudez, V., Payri, R., & Gimeno, J. (2003). NEW TECHNIQUE FOR DETERMINATION OF INTERNAL GEOMETRY OF A DIESEL NOZZLE WITH THE USE OF SILICONE METHODOLOGY. Experimental Techniques, 27(2), 39-43. doi:10.1111/j.1747-1567.2003.tb00107.x | es_ES |
dc.description.references | Manin, J., Bardi, M., Pickett, L. M., & Manin, J. (2012). SP2-4 Evaluation of the liquid length via diffused back-illumination imaging in vaporizing diesel sprays(SP: Spray and Spray Combustion,General Session Papers). The Proceedings of the International symposium on diagnostics and modeling of combustion in internal combustion engines, 2012.8(0), 665-673. doi:10.1299/jmsesdm.2012.8.665 | es_ES |
dc.description.references | Matheis, J., & Hickel, S. (2018). Multi-component vapor-liquid equilibrium model for LES of high-pressure fuel injection and application to ECN Spray A. International Journal of Multiphase Flow, 99, 294-311. doi:10.1016/j.ijmultiphaseflow.2017.11.001 | es_ES |
dc.description.references | Naber, J., Siebers, D., 1996. Effects of gas density and vaporization on penetration and dispersion of diesel sprays. SAE Technical Paper (960034). | es_ES |
dc.description.references | Nicoud, F., Toda, H. B., Cabrit, O., Bose, S., & Lee, J. (2011). Using singular values to build a subgrid-scale model for large eddy simulations. Physics of Fluids, 23(8), 085106. doi:10.1063/1.3623274 | es_ES |
dc.description.references | Oefelein, J., Dahms, R., & Lacaze, G. (2012). Detailed Modeling and Simulation of High-Pressure Fuel Injection Processes in Diesel Engines. SAE International Journal of Engines, 5(3), 1410-1419. doi:10.4271/2012-01-1258 | es_ES |
dc.description.references | Pandal, A., Pastor, J. M., Payri, R., Kastengren, A., Duke, D., Matusik, K., … Schmidt, D. (2017). Computational and Experimental Investigation of Interfacial Area in Near-Field Diesel Spray Simulation. SAE International Journal of Fuels and Lubricants, 10(2), 423-431. doi:10.4271/2017-01-0859 | es_ES |
dc.description.references | Pandal, A., Payri, R., García-Oliver, J. M., & Pastor, J. M. (2017). Optimization of spray break-up CFD simulations by combining Σ-Y Eulerian atomization model with a response surface methodology under diesel engine-like conditions (ECN Spray A). Computers & Fluids, 156, 9-20. doi:10.1016/j.compfluid.2017.06.022 | es_ES |
dc.description.references | Pastor, J. V., Garcia-Oliver, J. M., Pastor, J. M., & Vera-Tudela, W. (2015). ONE-DIMENSIONAL DIESEL SPRAY MODELING OF MULTICOMPONENT FUELS. Atomization and Sprays, 25(6), 485-517. doi:10.1615/atomizspr.2014010370 | es_ES |
dc.description.references | Pickett, L. M., Manin, J., Genzale, C. L., Siebers, D. L., Musculus, M. P. B., & Idicheria, C. A. (2011). Relationship Between Diesel Fuel Spray Vapor Penetration/Dispersion and Local Fuel Mixture Fraction. SAE International Journal of Engines, 4(1), 764-799. doi:10.4271/2011-01-0686 | es_ES |
dc.description.references | Pickett, L. M., Manin, J., Kastengren, A., & Powell, C. (2014). Comparison of Near-Field Structure and Growth of a Diesel Spray Using Light-Based Optical Microscopy and X-Ray Radiography. SAE International Journal of Engines, 7(2), 1044-1053. doi:10.4271/2014-01-1412 | es_ES |
dc.description.references | Poinsot, T. ., & Lelef, S. . (1992). Boundary conditions for direct simulations of compressible viscous flows. Journal of Computational Physics, 101(1), 104-129. doi:10.1016/0021-9991(92)90046-2 | es_ES |
dc.description.references | Pope, S. B. (2004). Ten questions concerning the large-eddy simulation of turbulent flows. New Journal of Physics, 6, 35-35. doi:10.1088/1367-2630/6/1/035 | es_ES |
dc.description.references | Poursadegh, F., Lacey, J. S., Brear, M. J., & Gordon, R. L. (2017). On the Fuel Spray Transition to Dense Fluid Mixing at Reciprocating Engine Conditions. Energy & Fuels, 31(6), 6445-6454. doi:10.1021/acs.energyfuels.7b00050 | es_ES |
dc.description.references | Ricou, F. P., & Spalding, D. B. (1961). Measurements of entrainment by axisymmetrical turbulent jets. Journal of Fluid Mechanics, 11(1), 21-32. doi:10.1017/s0022112061000834 | es_ES |
dc.description.references | Robert, A., Martinez, L., Tillou, J., & Richard, S. (2013). Eulerian – Eulerian Large Eddy Simulations Applied to Non-Reactive Transient Diesel Sprays. Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles, 69(1), 141-154. doi:10.2516/ogst/2013140 | es_ES |
dc.description.references | Schmidt, D. P., Gopalakrishnan, S., & Jasak, H. (2010). Multi-dimensional simulation of thermal non-equilibrium channel flow. International Journal of Multiphase Flow, 36(4), 284-292. doi:10.1016/j.ijmultiphaseflow.2009.11.012 | es_ES |
dc.description.references | Shin, D., Sandberg, R. D., & Richardson, E. S. (2017). Self-similarity of fluid residence time statistics in a turbulent round jet. Journal of Fluid Mechanics, 823, 1-25. doi:10.1017/jfm.2017.304 | es_ES |
dc.description.references | Shinjo, J., & Umemura, A. (2010). Simulation of liquid jet primary breakup: Dynamics of ligament and droplet formation. International Journal of Multiphase Flow, 36(7), 513-532. doi:10.1016/j.ijmultiphaseflow.2010.03.008 | es_ES |
dc.description.references | Taub, G. N., Lee, H., Balachandar, S., & Sherif, S. A. (2013). A direct numerical simulation study of higher order statistics in a turbulent round jet. Physics of Fluids, 25(11), 115102. doi:10.1063/1.4829045 | es_ES |
dc.description.references | Trask, N., Schmidt, D. P., Lightfoot, M., & Danczyk, S. (2012). Compressible Modeling of the Internal Two-Phase Flow in a Gas-Centered Swirl Coaxial Fuel Injector. Journal of Propulsion and Power, 28(4), 685-693. doi:10.2514/1.b34102 | es_ES |
dc.description.references | Wehrfritz, A., Kaario, O., Vuorinen, V., & Somers, B. (2016). Large Eddy Simulation of n-dodecane spray flames using Flamelet Generated Manifolds. Combustion and Flame, 167, 113-131. doi:10.1016/j.combustflame.2016.02.019 | es_ES |
dc.description.references | Weller, H. G., Tabor, G., Jasak, H., & Fureby, C. (1998). A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in Physics, 12(6), 620. doi:10.1063/1.168744 | es_ES |
dc.description.references | Xue, Q., Battistoni, M., Powell, C. F., Longman, D. E., Quan, S. P., Pomraning, E., … Som, S. (2015). An Eulerian CFD model and X-ray radiography for coupled nozzle flow and spray in internal combustion engines. International Journal of Multiphase Flow, 70, 77-88. doi:10.1016/j.ijmultiphaseflow.2014.11.012 | es_ES |
dc.description.references | Xue, Q., Som, S., Senecal, P. K., & Pomraning, E. (2013). LARGE EDDY SIMULATION OF FUEL-SPRAY UNDER NON-REACTING IC ENGINE CONDITIONS. Atomization and Sprays, 23(10), 925-955. doi:10.1615/atomizspr.2013008320 | es_ES |