- -

LES Eulerian diffuse-interface modeling of fuel dense sprays near- and far-field

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

LES Eulerian diffuse-interface modeling of fuel dense sprays near- and far-field

Mostrar el registro completo del ítem

Desantes Fernández, JM.; García-Oliver, JM.; Pastor Enguídanos, JM.; Olmeda-Ramiro, I.; Pandal, A.; Naud, B. (2020). LES Eulerian diffuse-interface modeling of fuel dense sprays near- and far-field. International Journal of Multiphase Flow. 127:1-13. https://doi.org/10.1016/j.ijmultiphaseflow.2020.103272

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/169345

Ficheros en el ítem

Metadatos del ítem

Título: LES Eulerian diffuse-interface modeling of fuel dense sprays near- and far-field
Autor: Desantes Fernández, José Mª García-Oliver, José M Pastor Enguídanos, José Manuel Olmeda-Ramiro, Iván Pandal, A. Naud, B.
Entidad UPV: Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Fecha difusión:
Resumen:
[EN] Engine fuel spray modeling still remains a challenge, especially in the dense near-nozzle region. This region is difficult to experimentally access and also to model due to the complex and rapid liquid and gas ...[+]
Palabras clave: Large eddy simulation , Eulerian , Diesel spray , Atomization , Engine Combustion Network (ECN) , OpenFOAM
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
International Journal of Multiphase Flow. (issn: 0301-9322 )
DOI: 10.1016/j.ijmultiphaseflow.2020.103272
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.ijmultiphaseflow.2020.103272
Código del Proyecto:
info:eu-repo/grantAgreement/UMA//RES-FI-2018-1-0039/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TRA2017-89139-C2-1-R/ES/DESARROLLO DE MODELOS DE COMBUSTION Y EMISIONES HPC PARA EL ANALISIS DE PLANTAS PROPULSIVAS DE TRANSPORTE SOSTENIBLES/
Agradecimientos:
This work was partially funded by the Spanish Ministerio de Economia y Competitividad within the frame of the CHEST (TRA2017-89139-C2-1-R) project. The computations were partially performed on the Tirant III cluster of the ...[+]
Tipo: Artículo

References

Andreini, A., Bianchini, C., Puggelli, S., & Demoulin, F. X. (2016). Development of a turbulent liquid flux model for Eulerian–Eulerian multiphase flow simulations. International Journal of Multiphase Flow, 81, 88-103. doi:10.1016/j.ijmultiphaseflow.2016.02.003

Anez, J., Ahmed, A., Hecht, N., Duret, B., Reveillon, J., & Demoulin, F. X. (2019). Eulerian–Lagrangian spray atomization model coupled with interface capturing method for diesel injectors. International Journal of Multiphase Flow, 113, 325-342. doi:10.1016/j.ijmultiphaseflow.2018.10.009

Baldwin, E. T., Grover, R. O., Parrish, S. E., Duke, D. J., Matusik, K. E., Powell, C. F., … Schmidt, D. P. (2016). String flash-boiling in gasoline direct injection simulations with transient needle motion. International Journal of Multiphase Flow, 87, 90-101. doi:10.1016/j.ijmultiphaseflow.2016.09.004 [+]
Andreini, A., Bianchini, C., Puggelli, S., & Demoulin, F. X. (2016). Development of a turbulent liquid flux model for Eulerian–Eulerian multiphase flow simulations. International Journal of Multiphase Flow, 81, 88-103. doi:10.1016/j.ijmultiphaseflow.2016.02.003

Anez, J., Ahmed, A., Hecht, N., Duret, B., Reveillon, J., & Demoulin, F. X. (2019). Eulerian–Lagrangian spray atomization model coupled with interface capturing method for diesel injectors. International Journal of Multiphase Flow, 113, 325-342. doi:10.1016/j.ijmultiphaseflow.2018.10.009

Baldwin, E. T., Grover, R. O., Parrish, S. E., Duke, D. J., Matusik, K. E., Powell, C. F., … Schmidt, D. P. (2016). String flash-boiling in gasoline direct injection simulations with transient needle motion. International Journal of Multiphase Flow, 87, 90-101. doi:10.1016/j.ijmultiphaseflow.2016.09.004

Bardi, M., Payri, R., Malbec, L. M., Bruneaux, G., Pickett, L. M., Manin, J., … Genzale, C. (2012). ENGINE COMBUSTION NETWORK: COMPARISON OF SPRAY DEVELOPMENT, VAPORIZATION, AND COMBUSTION IN DIFFERENT COMBUSTION VESSELS. Atomization and Sprays, 22(10), 807-842. doi:10.1615/atomizspr.2013005837

Battistoni, M., Som, S., & Powell, C. F. (2019). Highly resolved Eulerian simulations of fuel spray transients in single and multi-hole injectors: Nozzle flow and near-exit dynamics. Fuel, 251, 709-729. doi:10.1016/j.fuel.2019.04.076

Beheshti, N., Burluka, A. A., & Fairweather, M. (2007). Assessment of Σ−Y liq model predictions for air-assisted atomisation. Theoretical and Computational Fluid Dynamics, 21(5), 381-397. doi:10.1007/s00162-007-0052-3

Chesnel, J., Reveillon, J., Menard, T., & Demoulin, F.-X. (2011). LARGE EDDY SIMULATION OF LIQUID JET ATOMIZATION. Atomization and Sprays, 21(9), 711-736. doi:10.1615/atomizspr.2012003740

CMT, 2018. Virtual injection rate generator.

Crua, C., Heikal, M. R., & Gold, M. R. (2015). Microscopic imaging of the initial stage of diesel spray formation. Fuel, 157, 140-150. doi:10.1016/j.fuel.2015.04.041

Crua, C., Manin, J., & Pickett, L. M. (2017). On the transcritical mixing of fuels at diesel engine conditions. Fuel, 208, 535-548. doi:10.1016/j.fuel.2017.06.091

Dahms, R. N., Manin, J., Pickett, L. M., & Oefelein, J. C. (2013). Understanding high-pressure gas-liquid interface phenomena in Diesel engines. Proceedings of the Combustion Institute, 34(1), 1667-1675. doi:10.1016/j.proci.2012.06.169

Demoulin, F.-X., Beau, P.-A., Blokkeel, G., Mura, A., & Borghi, R. (2007). A NEW MODEL FOR TURBULENT FLOWS WITH LARGE DENSITY FLUCTUATIONS: APPLICATION TO LIQUID ATOMIZATION. Atomization and Sprays, 17(4), 315-345. doi:10.1615/atomizspr.v17.i4.20

Demoulin, F.-X., Reveillon, J., Duret, B., Bouali, Z., Desjonqueres, P., & Menard, T. (2013). TOWARD USING DIRECT NUMERICAL SIMULATION TO IMPROVE PRIMARY BREAK-UP MODELING. Atomization and Sprays, 23(11), 957-980. doi:10.1615/atomizspr.2013007439

Desantes, J. M., García-Oliver, J. M., Pastor, J. M., Pandal, A., Baldwin, E., & Schmidt, D. P. (2016). Coupled/decoupled spray simulation comparison of the ECN spray a condition with the -Y Eulerian atomization model. International Journal of Multiphase Flow, 80, 89-99. doi:10.1016/j.ijmultiphaseflow.2015.12.002

Dukowicz, J. K. (1980). A particle-fluid numerical model for liquid sprays. Journal of Computational Physics, 35(2), 229-253. doi:10.1016/0021-9991(80)90087-x

Duret, B., Reveillon, J., Menard, T., & Demoulin, F. X. (2013). Improving primary atomization modeling through DNS of two-phase flows. International Journal of Multiphase Flow, 55, 130-137. doi:10.1016/j.ijmultiphaseflow.2013.05.004

ECN, 2014. LVF data archive.

ECN, 2018. Engine combustion network data archive.

Garcia-Oliver, J. M., Pastor, J. M., Pandal, A., Trask, N., Baldwin, E., & Schmidt, D. P. (2013). DIESEL SPRAY CFD SIMULATIONS BASED ON THE Σ-Υ EULERIAN ATOMIZATION MODEL. Atomization and Sprays, 23(1), 71-95. doi:10.1615/atomizspr.2013007198

Gorokhovski, M., & Herrmann, M. (2008). Modeling Primary Atomization. Annual Review of Fluid Mechanics, 40(1), 343-366. doi:10.1146/annurev.fluid.40.111406.102200

Hussein, H. J., Capp, S. P., & George, W. K. (1994). Velocity measurements in a high-Reynolds-number, momentum-conserving, axisymmetric, turbulent jet. Journal of Fluid Mechanics, 258, 31-75. doi:10.1017/s002211209400323x

Ilavsky, J., & Jemian, P. R. (2009). Irena: tool suite for modeling and analysis of small-angle scattering. Journal of Applied Crystallography, 42(2), 347-353. doi:10.1107/s0021889809002222

Jasak, H., Weller, H. G., & Gosman, A. D. (1999). High resolution NVD differencing scheme for arbitrarily unstructured meshes. International Journal for Numerical Methods in Fluids, 31(2), 431-449. doi:10.1002/(sici)1097-0363(19990930)31:2<431::aid-fld884>3.0.co;2-t

Kastengren, A., Ilavsky, J., Viera, J. P., Payri, R., Duke, D. J., Swantek, A., … Powell, C. F. (2017). Measurements of droplet size in shear-driven atomization using ultra-small angle x-ray scattering. International Journal of Multiphase Flow, 92, 131-139. doi:10.1016/j.ijmultiphaseflow.2017.03.005

Kastengren, A. L., Tilocco, F. Z., Powell, C. F., Manin, J., Pickett, L. M., Payri, R., & Bazyn, T. (2012). ENGINE COMBUSTION NETWORK (ECN): MEASUREMENTS OF NOZZLE GEOMETRY AND HYDRAULIC BEHAVIOR. Atomization and Sprays, 22(12), 1011-1052. doi:10.1615/atomizspr.2013006309

Kastengren, A. L., Tilocco,F. Z., Duke, D. J., Powell, C. F., Seoksu, M., Xusheng, Z., 2012b. Time-resolved x-ray radiography of diesel injectors from the engine combustion network. ICLASS Paper (1369).

Kastengren, A. L., Powell, C. F., Wang, Y., Im, K.-S., & Wang, J. (2009). X-RAY RADIOGRAPHY MEASUREMENTS OF DIESEL SPRAY STRUCTURE AT ENGINE-LIKE AMBIENT DENSITY. Atomization and Sprays, 19(11), 1031-1044. doi:10.1615/atomizspr.v19.i11.30

Klein, M., Sadiki, A., & Janicka, J. (2003). A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. Journal of Computational Physics, 186(2), 652-665. doi:10.1016/s0021-9991(03)00090-1

Kraichnan, R. H. (1970). Diffusion by a Random Velocity Field. Physics of Fluids, 13(1), 22. doi:10.1063/1.1692799

Lacaze, G., Misdariis, A., Ruiz, A., & Oefelein, J. C. (2015). Analysis of high-pressure Diesel fuel injection processes using LES with real-fluid thermodynamics and transport. Proceedings of the Combustion Institute, 35(2), 1603-1611. doi:10.1016/j.proci.2014.06.072

Lebas, R., Menard, T., Beau, P. A., Berlemont, A., & Demoulin, F. X. (2009). Numerical simulation of primary break-up and atomization: DNS and modelling study. International Journal of Multiphase Flow, 35(3), 247-260. doi:10.1016/j.ijmultiphaseflow.2008.11.005

Ma, P. C., Wu, H., Jaravel, T., Bravo, L., & Ihme, M. (2019). Large-eddy simulations of transcritical injection and auto-ignition using diffuse-interface method and finite-rate chemistry. Proceedings of the Combustion Institute, 37(3), 3303-3310. doi:10.1016/j.proci.2018.05.063

Macian, V., Bermudez, V., Payri, R., & Gimeno, J. (2003). NEW TECHNIQUE FOR DETERMINATION OF INTERNAL GEOMETRY OF A DIESEL NOZZLE WITH THE USE OF SILICONE METHODOLOGY. Experimental Techniques, 27(2), 39-43. doi:10.1111/j.1747-1567.2003.tb00107.x

Manin, J., Bardi, M., Pickett, L. M., & Manin, J. (2012). SP2-4 Evaluation of the liquid length via diffused back-illumination imaging in vaporizing diesel sprays(SP: Spray and Spray Combustion,General Session Papers). The Proceedings of the International symposium on diagnostics and modeling of combustion in internal combustion engines, 2012.8(0), 665-673. doi:10.1299/jmsesdm.2012.8.665

Matheis, J., & Hickel, S. (2018). Multi-component vapor-liquid equilibrium model for LES of high-pressure fuel injection and application to ECN Spray A. International Journal of Multiphase Flow, 99, 294-311. doi:10.1016/j.ijmultiphaseflow.2017.11.001

Naber, J., Siebers, D., 1996. Effects of gas density and vaporization on penetration and dispersion of diesel sprays. SAE Technical Paper (960034).

Nicoud, F., Toda, H. B., Cabrit, O., Bose, S., & Lee, J. (2011). Using singular values to build a subgrid-scale model for large eddy simulations. Physics of Fluids, 23(8), 085106. doi:10.1063/1.3623274

Oefelein, J., Dahms, R., & Lacaze, G. (2012). Detailed Modeling and Simulation of High-Pressure Fuel Injection Processes in Diesel Engines. SAE International Journal of Engines, 5(3), 1410-1419. doi:10.4271/2012-01-1258

Pandal, A., Pastor, J. M., Payri, R., Kastengren, A., Duke, D., Matusik, K., … Schmidt, D. (2017). Computational and Experimental Investigation of Interfacial Area in Near-Field Diesel Spray Simulation. SAE International Journal of Fuels and Lubricants, 10(2), 423-431. doi:10.4271/2017-01-0859

Pandal, A., Payri, R., García-Oliver, J. M., & Pastor, J. M. (2017). Optimization of spray break-up CFD simulations by combining Σ-Y Eulerian atomization model with a response surface methodology under diesel engine-like conditions (ECN Spray A). Computers & Fluids, 156, 9-20. doi:10.1016/j.compfluid.2017.06.022

Pastor, J. V., Garcia-Oliver, J. M., Pastor, J. M., & Vera-Tudela, W. (2015). ONE-DIMENSIONAL DIESEL SPRAY MODELING OF MULTICOMPONENT FUELS. Atomization and Sprays, 25(6), 485-517. doi:10.1615/atomizspr.2014010370

Pickett, L. M., Manin, J., Genzale, C. L., Siebers, D. L., Musculus, M. P. B., & Idicheria, C. A. (2011). Relationship Between Diesel Fuel Spray Vapor Penetration/Dispersion and Local Fuel Mixture Fraction. SAE International Journal of Engines, 4(1), 764-799. doi:10.4271/2011-01-0686

Pickett, L. M., Manin, J., Kastengren, A., & Powell, C. (2014). Comparison of Near-Field Structure and Growth of a Diesel Spray Using Light-Based Optical Microscopy and X-Ray Radiography. SAE International Journal of Engines, 7(2), 1044-1053. doi:10.4271/2014-01-1412

Poinsot, T. ., & Lelef, S. . (1992). Boundary conditions for direct simulations of compressible viscous flows. Journal of Computational Physics, 101(1), 104-129. doi:10.1016/0021-9991(92)90046-2

Pope, S. B. (2004). Ten questions concerning the large-eddy simulation of turbulent flows. New Journal of Physics, 6, 35-35. doi:10.1088/1367-2630/6/1/035

Poursadegh, F., Lacey, J. S., Brear, M. J., & Gordon, R. L. (2017). On the Fuel Spray Transition to Dense Fluid Mixing at Reciprocating Engine Conditions. Energy & Fuels, 31(6), 6445-6454. doi:10.1021/acs.energyfuels.7b00050

Ricou, F. P., & Spalding, D. B. (1961). Measurements of entrainment by axisymmetrical turbulent jets. Journal of Fluid Mechanics, 11(1), 21-32. doi:10.1017/s0022112061000834

Robert, A., Martinez, L., Tillou, J., & Richard, S. (2013). Eulerian – Eulerian Large Eddy Simulations Applied to Non-Reactive Transient Diesel Sprays. Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles, 69(1), 141-154. doi:10.2516/ogst/2013140

Schmidt, D. P., Gopalakrishnan, S., & Jasak, H. (2010). Multi-dimensional simulation of thermal non-equilibrium channel flow. International Journal of Multiphase Flow, 36(4), 284-292. doi:10.1016/j.ijmultiphaseflow.2009.11.012

Shin, D., Sandberg, R. D., & Richardson, E. S. (2017). Self-similarity of fluid residence time statistics in a turbulent round jet. Journal of Fluid Mechanics, 823, 1-25. doi:10.1017/jfm.2017.304

Shinjo, J., & Umemura, A. (2010). Simulation of liquid jet primary breakup: Dynamics of ligament and droplet formation. International Journal of Multiphase Flow, 36(7), 513-532. doi:10.1016/j.ijmultiphaseflow.2010.03.008

Taub, G. N., Lee, H., Balachandar, S., & Sherif, S. A. (2013). A direct numerical simulation study of higher order statistics in a turbulent round jet. Physics of Fluids, 25(11), 115102. doi:10.1063/1.4829045

Trask, N., Schmidt, D. P., Lightfoot, M., & Danczyk, S. (2012). Compressible Modeling of the Internal Two-Phase Flow in a Gas-Centered Swirl Coaxial Fuel Injector. Journal of Propulsion and Power, 28(4), 685-693. doi:10.2514/1.b34102

Wehrfritz, A., Kaario, O., Vuorinen, V., & Somers, B. (2016). Large Eddy Simulation of n-dodecane spray flames using Flamelet Generated Manifolds. Combustion and Flame, 167, 113-131. doi:10.1016/j.combustflame.2016.02.019

Weller, H. G., Tabor, G., Jasak, H., & Fureby, C. (1998). A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in Physics, 12(6), 620. doi:10.1063/1.168744

Xue, Q., Battistoni, M., Powell, C. F., Longman, D. E., Quan, S. P., Pomraning, E., … Som, S. (2015). An Eulerian CFD model and X-ray radiography for coupled nozzle flow and spray in internal combustion engines. International Journal of Multiphase Flow, 70, 77-88. doi:10.1016/j.ijmultiphaseflow.2014.11.012

Xue, Q., Som, S., Senecal, P. K., & Pomraning, E. (2013). LARGE EDDY SIMULATION OF FUEL-SPRAY UNDER NON-REACTING IC ENGINE CONDITIONS. Atomization and Sprays, 23(10), 925-955. doi:10.1615/atomizspr.2013008320

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem