- -

Tailoring La(2-x)A(x)Ni(1-y)ByO(4+delta) cathode performance by simultaneous A and B doping for IT-SOFC

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Tailoring La(2-x)A(x)Ni(1-y)ByO(4+delta) cathode performance by simultaneous A and B doping for IT-SOFC

Mostrar el registro completo del ítem

Navarrete Algaba, L.; Fabuel Robledo, M.; Yoo, C.; Serra Alfaro, JM. (2020). Tailoring La(2-x)A(x)Ni(1-y)ByO(4+delta) cathode performance by simultaneous A and B doping for IT-SOFC. International Journal of Hydrogen Energy. 45(31):15589-15599. https://doi.org/10.1016/j.ijhydene.2020.03.150

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/169349

Ficheros en el ítem

Metadatos del ítem

Título: Tailoring La(2-x)A(x)Ni(1-y)ByO(4+delta) cathode performance by simultaneous A and B doping for IT-SOFC
Autor: Navarrete Algaba, Laura Fabuel Robledo, Maria Yoo, C.-Y. Serra Alfaro, José Manuel
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
[EN] The present work focuses on the study of different Ruddlesden-Popper based cathode materials for Solid Oxide Fuel Cells at Intermediate Temperature (IT-SOFC). The partial substitution of La and Ni by Pr and Co, ...[+]
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
International Journal of Hydrogen Energy. (issn: 0360-3199 )
DOI: 10.1016/j.ijhydene.2020.03.150
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.ijhydene.2020.03.150
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F006/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-102161-B-I00/ES/CONVERSION DIRECTA DE CO2 EN PORTADORES DE ENERGIA QUIMICA UTILIZANDO REACTORES ELECTROCATALITICOS DE MEMBRANA/
info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/
Agradecimientos:
This work was financially supported by Spanish Government (Grants SEV-2016-0683 and RTI2018-102161) and Generalitat Valenciana (PROMETEO/2018/006). Vicente B. Vert, Ji Haeng Yu and Dae Sik Yun are kindly acknowledged for ...[+]
Tipo: Artículo

References

Murray, E. P., Tsai, T., & Barnett, S. A. (1998). Oxygen transfer processes in (La,Sr)MnO3/Y2O3-stabilized ZrO2 cathodes: an impedance spectroscopy study. Solid State Ionics, 110(3-4), 235-243. doi:10.1016/s0167-2738(98)00142-8

Balaguer, M., Vert, V. B., Navarrete, L., & Serra, J. M. (2013). SOFC composite cathodes based on LSM and co-doped cerias (Ce0.8Gd0.1X0.1O2–δ, X = Gd, Cr, Mg, Bi, Ce). Journal of Power Sources, 223, 214-220. doi:10.1016/j.jpowsour.2012.09.060

Jørgensen, M. (2001). Effect of sintering temperature on microstructure and performance of LSM–YSZ composite cathodes. Solid State Ionics, 139(1-2), 1-11. doi:10.1016/s0167-2738(00)00818-3 [+]
Murray, E. P., Tsai, T., & Barnett, S. A. (1998). Oxygen transfer processes in (La,Sr)MnO3/Y2O3-stabilized ZrO2 cathodes: an impedance spectroscopy study. Solid State Ionics, 110(3-4), 235-243. doi:10.1016/s0167-2738(98)00142-8

Balaguer, M., Vert, V. B., Navarrete, L., & Serra, J. M. (2013). SOFC composite cathodes based on LSM and co-doped cerias (Ce0.8Gd0.1X0.1O2–δ, X = Gd, Cr, Mg, Bi, Ce). Journal of Power Sources, 223, 214-220. doi:10.1016/j.jpowsour.2012.09.060

Jørgensen, M. (2001). Effect of sintering temperature on microstructure and performance of LSM–YSZ composite cathodes. Solid State Ionics, 139(1-2), 1-11. doi:10.1016/s0167-2738(00)00818-3

Jørgensen, M. J., & Mogensen, M. (2001). Impedance of Solid Oxide Fuel Cell LSM/YSZ Composite Cathodes. Journal of The Electrochemical Society, 148(5), A433. doi:10.1149/1.1360203

Jiang, S. P. (2008). Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells: a review. Journal of Materials Science, 43(21), 6799-6833. doi:10.1007/s10853-008-2966-6

Tao, Z.-T., Jiang, Y.-M., Lei, L., & Chen, F. (2019). Pr0.5Ba0.5Co0.7Fe0.25Nb0.05O3-δ as air electrode for solid oxide steam electrolysis cells. International Journal of Hydrogen Energy, 44(42), 23539-23546. doi:10.1016/j.ijhydene.2019.07.050

Kim, S. J., Kim, K. J., Dayaghi, A. M., & Choi, G. M. (2016). Polarization and stability of La2NiO4+δ in comparison with La0.6Sr0.4Co0.2Fe0.8O3−δ as air electrode of solid oxide electrolysis cell. International Journal of Hydrogen Energy, 41(33), 14498-14506. doi:10.1016/j.ijhydene.2016.05.284

Morales-Zapata, M. A., Larrea, A., & Laguna-Bercero, M. A. (2020). Reversible operation performance of microtubular solid oxide cells with a nickelate-based oxygen electrode. International Journal of Hydrogen Energy, 45(8), 5535-5542. doi:10.1016/j.ijhydene.2019.05.122

Guan, B., Li, W., Zhang, H., & Liu, X. (2015). Oxygen Reduction Reaction Kinetics in Sr-Doped La2NiO4+δRuddlesden-Popper Phase as Cathode for Solid Oxide Fuel Cells. Journal of The Electrochemical Society, 162(7), F707-F712. doi:10.1149/2.0541507jes

Zhao, K., Xu, Q., Huang, D.-P., Chen, M., & Kim, B.-H. (2011). Microstructure and electrochemical properties of porous La2NiO4+δ electrodes spin-coated on Ce0.8Sm0.2O1.9 electrolyte. Ionics, 18(1-2), 75-83. doi:10.1007/s11581-011-0609-4

Amow, G., & Skinner, S. J. (2006). Recent developments in Ruddlesden–Popper nickelate systems for solid oxide fuel cell cathodes. Journal of Solid State Electrochemistry, 10(8), 538-546. doi:10.1007/s10008-006-0127-x

Huang, B. X., Malzbender, J., & Steinbrech, R. W. (2011). Thermo-mechanical properties of La2NiO4+δ. Journal of Materials Science, 46(14), 4937-4941. doi:10.1007/s10853-011-5406-y

Laguna-Bercero, M. A., Kinadjan, N., Sayers, R., El Shinawi, H., Greaves, C., & Skinner, S. J. (2010). Performance of La2-xSrxCo0.5Ni0.5O4±δ as an Oxygen Electrode for Solid Oxide Reversible Cells. Fuel Cells, 11(1), 102-107. doi:10.1002/fuce.201000067

Mehta, A., & Heaney, P. J. (1994). Structure ofLa2NiO4.18. Physical Review B, 49(1), 563-571. doi:10.1103/physrevb.49.563

Naumovich, E. N., & Kharton, V. V. (2010). Atomic-scale insight into the oxygen ionic transport mechanisms in La2NiO4-based materials. Journal of Molecular Structure: THEOCHEM, 946(1-3), 57-64. doi:10.1016/j.theochem.2009.12.003

Kharton, V. (2001). Ionic transport in oxygen-hyperstoichiometric phases with K2NiF4-type structure. Solid State Ionics, 143(3-4), 337-353. doi:10.1016/s0167-2738(01)00876-1

Baumann FS. [Ph.D.]. Stuttgart: Stuttgart University; 2006.

Chroneos, A., Yildiz, B., Tarancón, A., Parfitt, D., & Kilner, J. A. (2011). Oxygen diffusion in solid oxide fuel cell cathode and electrolyte materials: mechanistic insights from atomistic simulations. Energy & Environmental Science, 4(8), 2774. doi:10.1039/c0ee00717j

Huan, Y., Chen, S., Zeng, R., Wei, T., Dong, D., Hu, X., & Huang, Y. (2019). Intrinsic Effects of Ruddlesden‐Popper‐Based Bifunctional Catalysts for High‐Temperature Oxygen Reduction and Evolution. Advanced Energy Materials, 9(29), 1901573. doi:10.1002/aenm.201901573

Rodriguez-Carvajal, J., Fernandez-Diaz, M. T., & Martinez, J. L. (1991). Neutron diffraction study on structural and magnetic properties of La2NiO4. Journal of Physics: Condensed Matter, 3(19), 3215-3234. doi:10.1088/0953-8984/3/19/002

Serra, J. M., & Vert, V. B. (2009). Optimization of Oxygen Activation Fuel-Cell Electrocatalysts by Combinatorial Designs. ChemSusChem, 2(10), 957-961. doi:10.1002/cssc.200900149

Serra, J. M., Vert, V. B., Betz, M., Haanappel, V. A. C., Meulenberg, W. A., & Tietz, F. (2008). Screening of A-Substitution in the System A[sub 0.68]Sr[sub 0.3]Fe[sub 0.8]Co[sub 0.2]O[sub 3−δ] for SOFC Cathodes. Journal of The Electrochemical Society, 155(2), B207. doi:10.1149/1.2818766

Vibhu, V., Bassat, J.-M., Flura, A., Nicollet, C., Grenier, J.-C., & Rougier, A. (2015). Influence of La/Pr Ratio on the Ageing Properties of La2-XPrxNiO4+  as Cathodes in IT-SOFCs. ECS Transactions, 68(1), 825-835. doi:10.1149/06801.0825ecst

MUNNINGS, C., SKINNER, S., AMOW, G., WHITFIELD, P., & DAVIDSON, I. (2005). Oxygen transport in the LaNiCoO system. Solid State Ionics, 176(23-24), 1895-1901. doi:10.1016/j.ssi.2005.06.002

Wang, Y., Nie, H., Wang, S., Wen, T.-L., Guth, U., & Valshook, V. (2006). A2−αAα′BO4-type oxides as cathode materials for IT-SOFCs (A=Pr, Sm; A′=Sr; B=Fe, Co). Materials Letters, 60(9-10), 1174-1178. doi:10.1016/j.matlet.2005.10.104

Ullmann, H., Trofimenko, N., Tietz, F., Stöver, D., & Ahmad-Khanlou, A. (2000). Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFC cathodes. Solid State Ionics, 138(1-2), 79-90. doi:10.1016/s0167-2738(00)00770-0

Perry Murray, E. (2001). (La,Sr)MnO3–(Ce,Gd)O2−x composite cathodes for solid oxide fuel cells. Solid State Ionics, 143(3-4), 265-273. doi:10.1016/s0167-2738(01)00871-2

Voronin, V. I., Berger, I. F., Cherepanov, V. A., Gavrilova, L. Y., Petrov, A. N., Ancharov, A. I., … Nikitenko, S. G. (2001). Neutron diffraction, synchrotron radiation and EXAFS spectroscopy study of crystal structure peculiarities of the lanthanum nickelates Lan+1NinOy (n=1,2,3). Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 470(1-2), 202-209. doi:10.1016/s0168-9002(01)01036-1

Takahashi, S., Nishimoto, S., Matsuda, M., & Miyake, M. (2010). Electrode Properties of the Ruddlesden-Popper Series, Lan+1NinO3n+1 (n=1, 2, and 3), as Intermediate-Temperature Solid Oxide Fuel Cells. Journal of the American Ceramic Society, 93(8), 2329-2333. doi:10.1111/j.1551-2916.2010.03743.x

Flura, A., Dru, S., Nicollet, C., Vibhu, V., Fourcade, S., Lebraud, E., … Grenier, J.-C. (2015). Chemical and structural changes in Ln2NiO4 (Ln=La, Pr or Nd) lanthanide nickelates as a function of oxygen partial pressure at high temperature. Journal of Solid State Chemistry, 228, 189-198. doi:10.1016/j.jssc.2015.04.029

Solís, C., Navarrete, L., & Serra, J. M. (2013). Study of Pr and Pr and Co doped La2NiO4+δ as cathodes for La5.5WO11.25−δ based protonic conducting fuel cells. Journal of Power Sources, 240, 691-697. doi:10.1016/j.jpowsour.2013.05.055

Rietveld, H. M. (1969). A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 2(2), 65-71. doi:10.1107/s0021889869006558

Skinner, S. J. (2003). Characterisation of La2NiO4+δ using in-situ high temperature neutron powder diffraction. Solid State Sciences, 5(3), 419-426. doi:10.1016/s1293-2558(03)00050-5

Rabenau, A., & Eckerlin, P. (1958). Die K2NiF4-Struktur beim La2NiO4. Acta Crystallographica, 11(4), 304-306. doi:10.1107/s0365110x58000785

Jorgensen, J. D., Dabrowski, B., Pei, S., Richards, D. R., & Hinks, D. G. (1989). Structure of the interstitial oxygen defect inLa2NiO4+δ. Physical Review B, 40(4), 2187-2199. doi:10.1103/physrevb.40.2187

Vibhu, V., Rougier, A., Nicollet, C., Flura, A., Grenier, J.-C., & Bassat, J.-M. (2015). La2−Pr NiO4+ as suitable cathodes for metal supported SOFCs. Solid State Ionics, 278, 32-37. doi:10.1016/j.ssi.2015.05.005

Skinner, S. J., & Amow, G. (2007). Structural observations on La2(Ni,Co)O4±δ phases determined from in situ neutron powder diffraction. Journal of Solid State Chemistry, 180(7), 1977-1983. doi:10.1016/j.jssc.2007.04.020

Sharma, I. B., & Singh, D. (1998). Solid state chemistry of Ruddlesden-Popper type complex oxides. Bulletin of Materials Science, 21(5), 363-374. doi:10.1007/bf02744920

NISHIMOTO, S., TAKAHASHI, S., KAMESHIMA, Y., MATSUDA, M., & MIYAKE, M. (2011). Properties of La2-xPrxNiO4 cathode for intermediate-temperature solid oxide fuel cells. Journal of the Ceramic Society of Japan, 119(1387), 246-250. doi:10.2109/jcersj2.119.246

Takahashi, H., Munakata, F., & Yamanaka, M. (1996). Theoretical investigation of the electronic structure of LaCoO3byab initiomolecular-orbital calculations. Physical Review B, 53(7), 3731-3740. doi:10.1103/physrevb.53.3731

Asai, K., Yoneda, A., Yokokura, O., Tranquada, J. M., Shirane, G., & Kohn, K. (1998). Two Spin-State Transitions in LaCoO3. Journal of the Physical Society of Japan, 67(1), 290-296. doi:10.1143/jpsj.67.290

Amow, G., Whitfield, P. S., Davidson, I. J., Hammond, R. P., Munnings, C. N., & Skinner, S. J. (2004). Structural and sintering characteristics of the La2Ni1−xCoxO4+δ series. Ceramics International, 30(7), 1635-1639. doi:10.1016/j.ceramint.2003.12.164

Kovalevsky, A. V., Kharton, V. V., Yaremchenko, A. A., Pivak, Y. V., Tsipis, E. V., Yakovlev, S. O., … Frade, J. R. (2007). Oxygen permeability, stability and electrochemical behavior of % MathType!Translator!2!1!AMS LaTeX.tdl!TeX -- AMS-LaTeX! % MathType!MTEF!2!1!+- % feaaeaart1ev0aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX % garmWu51MyVXgatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wz % aebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY-Hhbbf9v8qqaq % Fr0xc9pk0xbba9q8WqFfea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qq % Q8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeWaeaaakeaaci % GGqbGaaiOCamaaBaaaleaacaaIYaaabeaakiaab6eacaqGPbGaae4t % amaaBaaaleaacaaI0aGaey4kaSIaeqiTdqgabeaaaaa!404E! $$ \Pr _{2} {\text{NiO}}_{{4 + \delta }} $$ -based materials. Journal of Electroceramics, 18(3-4), 205-218. doi:10.1007/s10832-007-9024-7

Vashook, V. V., Yushkevich, I. I., Kokhanovsky, L. V., Makhnach, L. V., Tolochko, S. P., Kononyuk, I. F., … Altenburg, H. (1999). Composition and conductivity of some nickelates. Solid State Ionics, 119(1-4), 23-30. doi:10.1016/s0167-2738(98)00478-0

Kharton, V. ., Yaremchenko, A. ., Shaula, A. ., Patrakeev, M. ., Naumovich, E. ., Logvinovich, D. ., … Marques, F. M. . (2004). Transport properties and stability of Ni-containing mixed conductors with perovskite- and K2NiF4-type structure. Journal of Solid State Chemistry, 177(1), 26-37. doi:10.1016/s0022-4596(03)00261-5

Greenblatt, M. (1997). Ruddlesden-Popper Lnn+1NinO3n+1 nickelates: structure and properties. Current Opinion in Solid State and Materials Science, 2(2), 174-183. doi:10.1016/s1359-0286(97)80062-9

Yaremchenko, A. A., Kharton, V. V., Patrakeev, M. V., & Frade, J. R. (2003). p-Type electronic conductivity, oxygen permeability and stability of La2Ni0.9Co0.1O4+δElectronic supplementary infromation (ESI) available: further experimental data for the oxygen permeability, total conductivity and Seebeck coefficient of La2Ni0.9Co0.1O4+δ. See http://www.rsc.org/suppdata/jm/b3/b300357d/. Journal of Materials Chemistry, 13(5), 1136-1144. doi:10.1039/b300357d

Mauvy, F., Lalanne, C., Bassat, J.-M., Grenier, J.-C., Zhao, H., Huo, L., & Stevens, P. (2006). Electrode properties of Ln[sub 2]NiO[sub 4+δ] (Ln=La, Nd, Pr). Journal of The Electrochemical Society, 153(8), A1547. doi:10.1149/1.2207059

ZHAO, H., MAUVY, F., LALANNE, C., BASSAT, J., FOURCADE, S., & GRENIER, J. (2008). New cathode materials for ITSOFC: Phase stability, oxygen exchange and cathode properties of La2−xNiO4+δ. Solid State Ionics, 179(35-36), 2000-2005. doi:10.1016/j.ssi.2008.06.019

Philippeau, B., Mauvy, F., Mazataud, C., Fourcade, S., & Grenier, J.-C. (2013). Comparative study of electrochemical properties of mixed conducting Ln2NiO4+δ (Ln=La, Pr and Nd) and La0.6Sr0.4Fe0.8Co0.2O3−δ as SOFC cathodes associated to Ce0.9Gd0.1O2−δ, La0.8Sr0.2Ga0.8Mg0.2O3−δ and La9Sr1Si6O26.5 electrolytes. Solid State Ionics, 249-250, 17-25. doi:10.1016/j.ssi.2013.06.009

Sharma, R. K., Burriel, M., Dessemond, L., Bassat, J. M., & Djurado, E. (2016). Design of interfaces in efficient Ln2NiO4+δ (Ln = La, Pr) cathodes for SOFC applications. Journal of Materials Chemistry A, 4(32), 12451-12462. doi:10.1039/c6ta04845e

Tsai, C.-Y., McGilvery, C. M., Aguadero, A., & Skinner, S. J. (2019). Phase evolution and reactivity of Pr2NiO4+δ and Ce0.9Gd0.1O2-δ composites under solid oxide cell sintering and operation temperatures. International Journal of Hydrogen Energy, 44(59), 31458-31465. doi:10.1016/j.ijhydene.2019.10.011

Hu, Y., Bouffanais, Y., Almar, L., Morata, A., Tarancon, A., & Dezanneau, G. (2013). La2−xSrxCoO4−δ (x = 0.9, 1.0, 1.1) Ruddlesden-Popper-type layered cobaltites as cathode materials for IT-SOFC application. International Journal of Hydrogen Energy, 38(7), 3064-3072. doi:10.1016/j.ijhydene.2012.12.047

Zhao, H., Li, Q., & Sun, L. (2011). Ln2MO4 cathode materials for solid oxide fuel cells. Science China Chemistry, 54(6), 898-910. doi:10.1007/s11426-011-4290-2

Navarrete, L., Solís, C., & Serra, J. M. (2015). Boosting the oxygen reduction reaction mechanisms in IT-SOFC cathodes by catalytic functionalization. Journal of Materials Chemistry A, 3(32), 16440-16444. doi:10.1039/c5ta05187h

Dusastre, V., & Kilner, J. A. (1999). Optimisation of composite cathodes for intermediate temperature SOFC applications. Solid State Ionics, 126(1-2), 163-174. doi:10.1016/s0167-2738(99)00108-3

Adler, S. B. (2004). Factors Governing Oxygen Reduction in Solid Oxide Fuel Cell Cathodes. Chemical Reviews, 104(10), 4791-4844. doi:10.1021/cr020724o

Ruiz-Morales, J. C., Marrero-López, D., Irvine, J. T. S., & Núñez, P. (2004). A new alternative representation of impedance data using the derivative of the tangent of the phase angle. Materials Research Bulletin, 39(9), 1299-1318. doi:10.1016/j.materresbull.2004.03.026

Li, G., Jin, H., Gui, L., He, B., & Zhao, L. (2018). (Pr 0.9 La 0.1 ) 2 (Ni 0.74 Cu 0.21 Nb 0.05 )O 4+δ -Ce 0.9 Gd 0.1 O 2−δ (GDC) as an active and CO 2 -tolerant nano-composite cathode for intermediate temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 43(6), 3291-3298. doi:10.1016/j.ijhydene.2017.12.140

Nielsen, J., Jacobsen, T., & Wandel, M. (2011). Impedance of porous IT-SOFC LSCF:CGO composite cathodes. Electrochimica Acta, 56(23), 7963-7974. doi:10.1016/j.electacta.2011.05.042

Balaguer, M., Solís, C., & Serra, J. M. (2012). Structural–Transport Properties Relationships on Ce1–xLnxO2−δ System (Ln = Gd, La, Tb, Pr, Eu, Er, Yb, Nd) and Effect of Cobalt Addition. The Journal of Physical Chemistry C, 116(14), 7975-7982. doi:10.1021/jp211594d

Balaguer, M., Solís, C., & Serra, J. M. (2011). Study of the Transport Properties of the Mixed Ionic Electronic Conductor Ce1−xTbxO2−δ + Co (x = 0.1, 0.2) and Evaluation As Oxygen-Transport Membrane. Chemistry of Materials, 23(9), 2333-2343. doi:10.1021/cm103581w

Bassat, J.-M., Burriel, M., Ceretti, M., Veber, P., Grenier, J.-C., Paulus, W., & Kilner, J. A. (2013). Highlights on the Anisotropic Oxygen Transport Properties of Nickelates with K2NiF4-Type Structure: Links with the Electrochemical Properties of the Corresponding IT-SOFC’s Cathodes. ECS Transactions, 57(1), 1753-1760. doi:10.1149/05701.1753ecst

Allançon, C., Odier, P., Bassat, J. M., & Loup, J. P. (1997). La and Sr Substituted Pr2NiO4+δ: Oxygenation and Electrical Properties. Journal of Solid State Chemistry, 131(1), 167-172. doi:10.1006/jssc.1997.7402

Kilner, J. (2002). Mass transport in La2Ni1−xCoxO4+δ oxides with the K2NiF4 structure. Solid State Ionics, 154-155, 523-527. doi:10.1016/s0167-2738(02)00506-4

BOEHM, E., BASSAT, J., DORDOR, P., MAUVY, F., GRENIER, J., & STEVENS, P. (2005). Oxygen diffusion and transport properties in non-stoichiometric LnNiO oxides. Solid State Ionics, 176(37-38), 2717-2725. doi:10.1016/j.ssi.2005.06.033

Shahrokhi, S., Babaei, A., & Zamani, C. (2018). Reversible operation of La0·8Sr0·2MnO3 oxygen electrode infiltrated with Ruddlesden-Popper and perovskite lanthanum nickel cobaltite. International Journal of Hydrogen Energy, 43(52), 23091-23100. doi:10.1016/j.ijhydene.2018.10.186

An, C. M., Song, J.-H., Kang, I., & Sammes, N. (2010). The effect of porosity gradient in a Nickel/Yttria Stabilized Zirconia anode for an anode-supported planar solid oxide fuel cell. Journal of Power Sources, 195(3), 821-824. doi:10.1016/j.jpowsour.2009.08.043

Leng, Y. (2004). Performance evaluation of anode-supported solid oxide fuel cells with thin film YSZ electrolyte. International Journal of Hydrogen Energy, 29(10), 1025-1033. doi:10.1016/j.ijhydene.2004.01.009

Tsai, T. (1997). Effect of LSM-YSZ cathode on thin-electrolyte solid oxide fuel cell performance. Solid State Ionics, 93(3-4), 207-217. doi:10.1016/s0167-2738(96)00524-3

Serra, J. M., Uhlenbruck, S., Meulenberg, W. A., Buchkremer, H. P., & Stöver, D. (2006). Nano-structuring of solid oxide fuel cells cathodes. Topics in Catalysis, 40(1-4), 123-131. doi:10.1007/s11244-006-0114-6

Zhang, X., Zhang, L., Meng, J., Zhang, W., Meng, F., Liu, X., & Meng, J. (2017). Highly enhanced electrochemical property by Mg-doping La2Ni1-Mg O4+δ (x = 0.0, 0.02, 0.05 and 0.10) cathodes for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 42(49), 29498-29510. doi:10.1016/j.ijhydene.2017.10.091

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem