- -

Tailoring La(2-x)A(x)Ni(1-y)ByO(4+delta) cathode performance by simultaneous A and B doping for IT-SOFC

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Tailoring La(2-x)A(x)Ni(1-y)ByO(4+delta) cathode performance by simultaneous A and B doping for IT-SOFC

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Navarrete Algaba, Laura es_ES
dc.contributor.author Fabuel Robledo, Maria es_ES
dc.contributor.author Yoo, C.-Y. es_ES
dc.contributor.author Serra Alfaro, José Manuel es_ES
dc.date.accessioned 2021-07-16T03:31:42Z
dc.date.available 2021-07-16T03:31:42Z
dc.date.issued 2020-06-08 es_ES
dc.identifier.issn 0360-3199 es_ES
dc.identifier.uri http://hdl.handle.net/10251/169349
dc.description.abstract [EN] The present work focuses on the study of different Ruddlesden-Popper based cathode materials for Solid Oxide Fuel Cells at Intermediate Temperature (IT-SOFC). The partial substitution of La and Ni by Pr and Co, respectively, were studied in the La(2-x)A(x)Ni(1-y)ByO(4+delta) system, with the purpose of enhancing their mixed ionic-electronic conductivity and the electrocatalytic activity for the O-2-reduction while the crystal structure was preserved. All synthesized compounds were characterized by electrochemical impedance spectroscopy (EIS), DC conductivity measurements, X-Ray diffraction (XRD), iodometric titration and scanning electron microscopy (SEM). XRD analyses by Rietveld refinement revealed the influence of the ionic radius on the crystalline phase for the different dopants, i.e., variation of the cell parameters and M-O bond lengths. The substitution in both La and Ni sites improves La2NiO4+delta electrochemical properties as IT-SOFC cathode, since higher conductivity and lower polarization resistance were obtained. Finally, La1.5Pr0.5Ni0.8Co0.2O4+delta cathode exhibited the lowest electrode polarization resistance and activation energy values in the temperature range of 450-900 degrees C. La1.5Pr0.5Ni0.8Co0.2O4+delta was applied on an anode supported cell and a maximum power density of similar to 400 mW cm(-2) was obtained at 700 degrees C using pure hydrogen and air. es_ES
dc.description.sponsorship This work was financially supported by Spanish Government (Grants SEV-2016-0683 and RTI2018-102161) and Generalitat Valenciana (PROMETEO/2018/006). Vicente B. Vert, Ji Haeng Yu and Dae Sik Yun are kindly acknowledged for their support during this work preparation and Forschungszentrum Julich for providing the anode supported cell. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof International Journal of Hydrogen Energy es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.title Tailoring La(2-x)A(x)Ni(1-y)ByO(4+delta) cathode performance by simultaneous A and B doping for IT-SOFC es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.ijhydene.2020.03.150 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F006/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-102161-B-I00/ES/CONVERSION DIRECTA DE CO2 EN PORTADORES DE ENERGIA QUIMICA UTILIZANDO REACTORES ELECTROCATALITICOS DE MEMBRANA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Navarrete Algaba, L.; Fabuel Robledo, M.; Yoo, C.; Serra Alfaro, JM. (2020). Tailoring La(2-x)A(x)Ni(1-y)ByO(4+delta) cathode performance by simultaneous A and B doping for IT-SOFC. International Journal of Hydrogen Energy. 45(31):15589-15599. https://doi.org/10.1016/j.ijhydene.2020.03.150 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.ijhydene.2020.03.150 es_ES
dc.description.upvformatpinicio 15589 es_ES
dc.description.upvformatpfin 15599 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 45 es_ES
dc.description.issue 31 es_ES
dc.relation.pasarela S\418561 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Murray, E. P., Tsai, T., & Barnett, S. A. (1998). Oxygen transfer processes in (La,Sr)MnO3/Y2O3-stabilized ZrO2 cathodes: an impedance spectroscopy study. Solid State Ionics, 110(3-4), 235-243. doi:10.1016/s0167-2738(98)00142-8 es_ES
dc.description.references Balaguer, M., Vert, V. B., Navarrete, L., & Serra, J. M. (2013). SOFC composite cathodes based on LSM and co-doped cerias (Ce0.8Gd0.1X0.1O2–δ, X = Gd, Cr, Mg, Bi, Ce). Journal of Power Sources, 223, 214-220. doi:10.1016/j.jpowsour.2012.09.060 es_ES
dc.description.references Jørgensen, M. (2001). Effect of sintering temperature on microstructure and performance of LSM–YSZ composite cathodes. Solid State Ionics, 139(1-2), 1-11. doi:10.1016/s0167-2738(00)00818-3 es_ES
dc.description.references Jørgensen, M. J., & Mogensen, M. (2001). Impedance of Solid Oxide Fuel Cell LSM/YSZ Composite Cathodes. Journal of The Electrochemical Society, 148(5), A433. doi:10.1149/1.1360203 es_ES
dc.description.references Jiang, S. P. (2008). Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells: a review. Journal of Materials Science, 43(21), 6799-6833. doi:10.1007/s10853-008-2966-6 es_ES
dc.description.references Tao, Z.-T., Jiang, Y.-M., Lei, L., & Chen, F. (2019). Pr0.5Ba0.5Co0.7Fe0.25Nb0.05O3-δ as air electrode for solid oxide steam electrolysis cells. International Journal of Hydrogen Energy, 44(42), 23539-23546. doi:10.1016/j.ijhydene.2019.07.050 es_ES
dc.description.references Kim, S. J., Kim, K. J., Dayaghi, A. M., & Choi, G. M. (2016). Polarization and stability of La2NiO4+δ in comparison with La0.6Sr0.4Co0.2Fe0.8O3−δ as air electrode of solid oxide electrolysis cell. International Journal of Hydrogen Energy, 41(33), 14498-14506. doi:10.1016/j.ijhydene.2016.05.284 es_ES
dc.description.references Morales-Zapata, M. A., Larrea, A., & Laguna-Bercero, M. A. (2020). Reversible operation performance of microtubular solid oxide cells with a nickelate-based oxygen electrode. International Journal of Hydrogen Energy, 45(8), 5535-5542. doi:10.1016/j.ijhydene.2019.05.122 es_ES
dc.description.references Guan, B., Li, W., Zhang, H., & Liu, X. (2015). Oxygen Reduction Reaction Kinetics in Sr-Doped La2NiO4+δRuddlesden-Popper Phase as Cathode for Solid Oxide Fuel Cells. Journal of The Electrochemical Society, 162(7), F707-F712. doi:10.1149/2.0541507jes es_ES
dc.description.references Zhao, K., Xu, Q., Huang, D.-P., Chen, M., & Kim, B.-H. (2011). Microstructure and electrochemical properties of porous La2NiO4+δ electrodes spin-coated on Ce0.8Sm0.2O1.9 electrolyte. Ionics, 18(1-2), 75-83. doi:10.1007/s11581-011-0609-4 es_ES
dc.description.references Amow, G., & Skinner, S. J. (2006). Recent developments in Ruddlesden–Popper nickelate systems for solid oxide fuel cell cathodes. Journal of Solid State Electrochemistry, 10(8), 538-546. doi:10.1007/s10008-006-0127-x es_ES
dc.description.references Huang, B. X., Malzbender, J., & Steinbrech, R. W. (2011). Thermo-mechanical properties of La2NiO4+δ. Journal of Materials Science, 46(14), 4937-4941. doi:10.1007/s10853-011-5406-y es_ES
dc.description.references Laguna-Bercero, M. A., Kinadjan, N., Sayers, R., El Shinawi, H., Greaves, C., & Skinner, S. J. (2010). Performance of La2-xSrxCo0.5Ni0.5O4±δ as an Oxygen Electrode for Solid Oxide Reversible Cells. Fuel Cells, 11(1), 102-107. doi:10.1002/fuce.201000067 es_ES
dc.description.references Mehta, A., & Heaney, P. J. (1994). Structure ofLa2NiO4.18. Physical Review B, 49(1), 563-571. doi:10.1103/physrevb.49.563 es_ES
dc.description.references Naumovich, E. N., & Kharton, V. V. (2010). Atomic-scale insight into the oxygen ionic transport mechanisms in La2NiO4-based materials. Journal of Molecular Structure: THEOCHEM, 946(1-3), 57-64. doi:10.1016/j.theochem.2009.12.003 es_ES
dc.description.references Kharton, V. (2001). Ionic transport in oxygen-hyperstoichiometric phases with K2NiF4-type structure. Solid State Ionics, 143(3-4), 337-353. doi:10.1016/s0167-2738(01)00876-1 es_ES
dc.description.references Baumann FS. [Ph.D.]. Stuttgart: Stuttgart University; 2006. es_ES
dc.description.references Chroneos, A., Yildiz, B., Tarancón, A., Parfitt, D., & Kilner, J. A. (2011). Oxygen diffusion in solid oxide fuel cell cathode and electrolyte materials: mechanistic insights from atomistic simulations. Energy & Environmental Science, 4(8), 2774. doi:10.1039/c0ee00717j es_ES
dc.description.references Huan, Y., Chen, S., Zeng, R., Wei, T., Dong, D., Hu, X., & Huang, Y. (2019). Intrinsic Effects of Ruddlesden‐Popper‐Based Bifunctional Catalysts for High‐Temperature Oxygen Reduction and Evolution. Advanced Energy Materials, 9(29), 1901573. doi:10.1002/aenm.201901573 es_ES
dc.description.references Rodriguez-Carvajal, J., Fernandez-Diaz, M. T., & Martinez, J. L. (1991). Neutron diffraction study on structural and magnetic properties of La2NiO4. Journal of Physics: Condensed Matter, 3(19), 3215-3234. doi:10.1088/0953-8984/3/19/002 es_ES
dc.description.references Serra, J. M., & Vert, V. B. (2009). Optimization of Oxygen Activation Fuel-Cell Electrocatalysts by Combinatorial Designs. ChemSusChem, 2(10), 957-961. doi:10.1002/cssc.200900149 es_ES
dc.description.references Serra, J. M., Vert, V. B., Betz, M., Haanappel, V. A. C., Meulenberg, W. A., & Tietz, F. (2008). Screening of A-Substitution in the System A[sub 0.68]Sr[sub 0.3]Fe[sub 0.8]Co[sub 0.2]O[sub 3−δ] for SOFC Cathodes. Journal of The Electrochemical Society, 155(2), B207. doi:10.1149/1.2818766 es_ES
dc.description.references Vibhu, V., Bassat, J.-M., Flura, A., Nicollet, C., Grenier, J.-C., & Rougier, A. (2015). Influence of La/Pr Ratio on the Ageing Properties of La2-XPrxNiO4+  as Cathodes in IT-SOFCs. ECS Transactions, 68(1), 825-835. doi:10.1149/06801.0825ecst es_ES
dc.description.references MUNNINGS, C., SKINNER, S., AMOW, G., WHITFIELD, P., & DAVIDSON, I. (2005). Oxygen transport in the LaNiCoO system. Solid State Ionics, 176(23-24), 1895-1901. doi:10.1016/j.ssi.2005.06.002 es_ES
dc.description.references Wang, Y., Nie, H., Wang, S., Wen, T.-L., Guth, U., & Valshook, V. (2006). A2−αAα′BO4-type oxides as cathode materials for IT-SOFCs (A=Pr, Sm; A′=Sr; B=Fe, Co). Materials Letters, 60(9-10), 1174-1178. doi:10.1016/j.matlet.2005.10.104 es_ES
dc.description.references Ullmann, H., Trofimenko, N., Tietz, F., Stöver, D., & Ahmad-Khanlou, A. (2000). Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFC cathodes. Solid State Ionics, 138(1-2), 79-90. doi:10.1016/s0167-2738(00)00770-0 es_ES
dc.description.references Perry Murray, E. (2001). (La,Sr)MnO3–(Ce,Gd)O2−x composite cathodes for solid oxide fuel cells. Solid State Ionics, 143(3-4), 265-273. doi:10.1016/s0167-2738(01)00871-2 es_ES
dc.description.references Voronin, V. I., Berger, I. F., Cherepanov, V. A., Gavrilova, L. Y., Petrov, A. N., Ancharov, A. I., … Nikitenko, S. G. (2001). Neutron diffraction, synchrotron radiation and EXAFS spectroscopy study of crystal structure peculiarities of the lanthanum nickelates Lan+1NinOy (n=1,2,3). Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 470(1-2), 202-209. doi:10.1016/s0168-9002(01)01036-1 es_ES
dc.description.references Takahashi, S., Nishimoto, S., Matsuda, M., & Miyake, M. (2010). Electrode Properties of the Ruddlesden-Popper Series, Lan+1NinO3n+1 (n=1, 2, and 3), as Intermediate-Temperature Solid Oxide Fuel Cells. Journal of the American Ceramic Society, 93(8), 2329-2333. doi:10.1111/j.1551-2916.2010.03743.x es_ES
dc.description.references Flura, A., Dru, S., Nicollet, C., Vibhu, V., Fourcade, S., Lebraud, E., … Grenier, J.-C. (2015). Chemical and structural changes in Ln2NiO4 (Ln=La, Pr or Nd) lanthanide nickelates as a function of oxygen partial pressure at high temperature. Journal of Solid State Chemistry, 228, 189-198. doi:10.1016/j.jssc.2015.04.029 es_ES
dc.description.references Solís, C., Navarrete, L., & Serra, J. M. (2013). Study of Pr and Pr and Co doped La2NiO4+δ as cathodes for La5.5WO11.25−δ based protonic conducting fuel cells. Journal of Power Sources, 240, 691-697. doi:10.1016/j.jpowsour.2013.05.055 es_ES
dc.description.references Rietveld, H. M. (1969). A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 2(2), 65-71. doi:10.1107/s0021889869006558 es_ES
dc.description.references Skinner, S. J. (2003). Characterisation of La2NiO4+δ using in-situ high temperature neutron powder diffraction. Solid State Sciences, 5(3), 419-426. doi:10.1016/s1293-2558(03)00050-5 es_ES
dc.description.references Rabenau, A., & Eckerlin, P. (1958). Die K2NiF4-Struktur beim La2NiO4. Acta Crystallographica, 11(4), 304-306. doi:10.1107/s0365110x58000785 es_ES
dc.description.references Jorgensen, J. D., Dabrowski, B., Pei, S., Richards, D. R., & Hinks, D. G. (1989). Structure of the interstitial oxygen defect inLa2NiO4+δ. Physical Review B, 40(4), 2187-2199. doi:10.1103/physrevb.40.2187 es_ES
dc.description.references Vibhu, V., Rougier, A., Nicollet, C., Flura, A., Grenier, J.-C., & Bassat, J.-M. (2015). La2−Pr NiO4+ as suitable cathodes for metal supported SOFCs. Solid State Ionics, 278, 32-37. doi:10.1016/j.ssi.2015.05.005 es_ES
dc.description.references Skinner, S. J., & Amow, G. (2007). Structural observations on La2(Ni,Co)O4±δ phases determined from in situ neutron powder diffraction. Journal of Solid State Chemistry, 180(7), 1977-1983. doi:10.1016/j.jssc.2007.04.020 es_ES
dc.description.references Sharma, I. B., & Singh, D. (1998). Solid state chemistry of Ruddlesden-Popper type complex oxides. Bulletin of Materials Science, 21(5), 363-374. doi:10.1007/bf02744920 es_ES
dc.description.references NISHIMOTO, S., TAKAHASHI, S., KAMESHIMA, Y., MATSUDA, M., & MIYAKE, M. (2011). Properties of La2-xPrxNiO4 cathode for intermediate-temperature solid oxide fuel cells. Journal of the Ceramic Society of Japan, 119(1387), 246-250. doi:10.2109/jcersj2.119.246 es_ES
dc.description.references Takahashi, H., Munakata, F., & Yamanaka, M. (1996). Theoretical investigation of the electronic structure of LaCoO3byab initiomolecular-orbital calculations. Physical Review B, 53(7), 3731-3740. doi:10.1103/physrevb.53.3731 es_ES
dc.description.references Asai, K., Yoneda, A., Yokokura, O., Tranquada, J. M., Shirane, G., & Kohn, K. (1998). Two Spin-State Transitions in LaCoO3. Journal of the Physical Society of Japan, 67(1), 290-296. doi:10.1143/jpsj.67.290 es_ES
dc.description.references Amow, G., Whitfield, P. S., Davidson, I. J., Hammond, R. P., Munnings, C. N., & Skinner, S. J. (2004). Structural and sintering characteristics of the La2Ni1−xCoxO4+δ series. Ceramics International, 30(7), 1635-1639. doi:10.1016/j.ceramint.2003.12.164 es_ES
dc.description.references Kovalevsky, A. V., Kharton, V. V., Yaremchenko, A. A., Pivak, Y. V., Tsipis, E. V., Yakovlev, S. O., … Frade, J. R. (2007). Oxygen permeability, stability and electrochemical behavior of % MathType!Translator!2!1!AMS LaTeX.tdl!TeX -- AMS-LaTeX! % MathType!MTEF!2!1!+- % feaaeaart1ev0aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX % garmWu51MyVXgatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wz % aebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY-Hhbbf9v8qqaq % Fr0xc9pk0xbba9q8WqFfea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qq % Q8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeWaeaaakeaaci % GGqbGaaiOCamaaBaaaleaacaaIYaaabeaakiaab6eacaqGPbGaae4t % amaaBaaaleaacaaI0aGaey4kaSIaeqiTdqgabeaaaaa!404E! $$ \Pr _{2} {\text{NiO}}_{{4 + \delta }} $$ -based materials. Journal of Electroceramics, 18(3-4), 205-218. doi:10.1007/s10832-007-9024-7 es_ES
dc.description.references Vashook, V. V., Yushkevich, I. I., Kokhanovsky, L. V., Makhnach, L. V., Tolochko, S. P., Kononyuk, I. F., … Altenburg, H. (1999). Composition and conductivity of some nickelates. Solid State Ionics, 119(1-4), 23-30. doi:10.1016/s0167-2738(98)00478-0 es_ES
dc.description.references Kharton, V. ., Yaremchenko, A. ., Shaula, A. ., Patrakeev, M. ., Naumovich, E. ., Logvinovich, D. ., … Marques, F. M. . (2004). Transport properties and stability of Ni-containing mixed conductors with perovskite- and K2NiF4-type structure. Journal of Solid State Chemistry, 177(1), 26-37. doi:10.1016/s0022-4596(03)00261-5 es_ES
dc.description.references Greenblatt, M. (1997). Ruddlesden-Popper Lnn+1NinO3n+1 nickelates: structure and properties. Current Opinion in Solid State and Materials Science, 2(2), 174-183. doi:10.1016/s1359-0286(97)80062-9 es_ES
dc.description.references Yaremchenko, A. A., Kharton, V. V., Patrakeev, M. V., & Frade, J. R. (2003). p-Type electronic conductivity, oxygen permeability and stability of La2Ni0.9Co0.1O4+δElectronic supplementary infromation (ESI) available: further experimental data for the oxygen permeability, total conductivity and Seebeck coefficient of La2Ni0.9Co0.1O4+δ. See http://www.rsc.org/suppdata/jm/b3/b300357d/. Journal of Materials Chemistry, 13(5), 1136-1144. doi:10.1039/b300357d es_ES
dc.description.references Mauvy, F., Lalanne, C., Bassat, J.-M., Grenier, J.-C., Zhao, H., Huo, L., & Stevens, P. (2006). Electrode properties of Ln[sub 2]NiO[sub 4+δ] (Ln=La, Nd, Pr). Journal of The Electrochemical Society, 153(8), A1547. doi:10.1149/1.2207059 es_ES
dc.description.references ZHAO, H., MAUVY, F., LALANNE, C., BASSAT, J., FOURCADE, S., & GRENIER, J. (2008). New cathode materials for ITSOFC: Phase stability, oxygen exchange and cathode properties of La2−xNiO4+δ. Solid State Ionics, 179(35-36), 2000-2005. doi:10.1016/j.ssi.2008.06.019 es_ES
dc.description.references Philippeau, B., Mauvy, F., Mazataud, C., Fourcade, S., & Grenier, J.-C. (2013). Comparative study of electrochemical properties of mixed conducting Ln2NiO4+δ (Ln=La, Pr and Nd) and La0.6Sr0.4Fe0.8Co0.2O3−δ as SOFC cathodes associated to Ce0.9Gd0.1O2−δ, La0.8Sr0.2Ga0.8Mg0.2O3−δ and La9Sr1Si6O26.5 electrolytes. Solid State Ionics, 249-250, 17-25. doi:10.1016/j.ssi.2013.06.009 es_ES
dc.description.references Sharma, R. K., Burriel, M., Dessemond, L., Bassat, J. M., & Djurado, E. (2016). Design of interfaces in efficient Ln2NiO4+δ (Ln = La, Pr) cathodes for SOFC applications. Journal of Materials Chemistry A, 4(32), 12451-12462. doi:10.1039/c6ta04845e es_ES
dc.description.references Tsai, C.-Y., McGilvery, C. M., Aguadero, A., & Skinner, S. J. (2019). Phase evolution and reactivity of Pr2NiO4+δ and Ce0.9Gd0.1O2-δ composites under solid oxide cell sintering and operation temperatures. International Journal of Hydrogen Energy, 44(59), 31458-31465. doi:10.1016/j.ijhydene.2019.10.011 es_ES
dc.description.references Hu, Y., Bouffanais, Y., Almar, L., Morata, A., Tarancon, A., & Dezanneau, G. (2013). La2−xSrxCoO4−δ (x = 0.9, 1.0, 1.1) Ruddlesden-Popper-type layered cobaltites as cathode materials for IT-SOFC application. International Journal of Hydrogen Energy, 38(7), 3064-3072. doi:10.1016/j.ijhydene.2012.12.047 es_ES
dc.description.references Zhao, H., Li, Q., & Sun, L. (2011). Ln2MO4 cathode materials for solid oxide fuel cells. Science China Chemistry, 54(6), 898-910. doi:10.1007/s11426-011-4290-2 es_ES
dc.description.references Navarrete, L., Solís, C., & Serra, J. M. (2015). Boosting the oxygen reduction reaction mechanisms in IT-SOFC cathodes by catalytic functionalization. Journal of Materials Chemistry A, 3(32), 16440-16444. doi:10.1039/c5ta05187h es_ES
dc.description.references Dusastre, V., & Kilner, J. A. (1999). Optimisation of composite cathodes for intermediate temperature SOFC applications. Solid State Ionics, 126(1-2), 163-174. doi:10.1016/s0167-2738(99)00108-3 es_ES
dc.description.references Adler, S. B. (2004). Factors Governing Oxygen Reduction in Solid Oxide Fuel Cell Cathodes. Chemical Reviews, 104(10), 4791-4844. doi:10.1021/cr020724o es_ES
dc.description.references Ruiz-Morales, J. C., Marrero-López, D., Irvine, J. T. S., & Núñez, P. (2004). A new alternative representation of impedance data using the derivative of the tangent of the phase angle. Materials Research Bulletin, 39(9), 1299-1318. doi:10.1016/j.materresbull.2004.03.026 es_ES
dc.description.references Li, G., Jin, H., Gui, L., He, B., & Zhao, L. (2018). (Pr 0.9 La 0.1 ) 2 (Ni 0.74 Cu 0.21 Nb 0.05 )O 4+δ -Ce 0.9 Gd 0.1 O 2−δ (GDC) as an active and CO 2 -tolerant nano-composite cathode for intermediate temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 43(6), 3291-3298. doi:10.1016/j.ijhydene.2017.12.140 es_ES
dc.description.references Nielsen, J., Jacobsen, T., & Wandel, M. (2011). Impedance of porous IT-SOFC LSCF:CGO composite cathodes. Electrochimica Acta, 56(23), 7963-7974. doi:10.1016/j.electacta.2011.05.042 es_ES
dc.description.references Balaguer, M., Solís, C., & Serra, J. M. (2012). Structural–Transport Properties Relationships on Ce1–xLnxO2−δ System (Ln = Gd, La, Tb, Pr, Eu, Er, Yb, Nd) and Effect of Cobalt Addition. The Journal of Physical Chemistry C, 116(14), 7975-7982. doi:10.1021/jp211594d es_ES
dc.description.references Balaguer, M., Solís, C., & Serra, J. M. (2011). Study of the Transport Properties of the Mixed Ionic Electronic Conductor Ce1−xTbxO2−δ + Co (x = 0.1, 0.2) and Evaluation As Oxygen-Transport Membrane. Chemistry of Materials, 23(9), 2333-2343. doi:10.1021/cm103581w es_ES
dc.description.references Bassat, J.-M., Burriel, M., Ceretti, M., Veber, P., Grenier, J.-C., Paulus, W., & Kilner, J. A. (2013). Highlights on the Anisotropic Oxygen Transport Properties of Nickelates with K2NiF4-Type Structure: Links with the Electrochemical Properties of the Corresponding IT-SOFC’s Cathodes. ECS Transactions, 57(1), 1753-1760. doi:10.1149/05701.1753ecst es_ES
dc.description.references Allançon, C., Odier, P., Bassat, J. M., & Loup, J. P. (1997). La and Sr Substituted Pr2NiO4+δ: Oxygenation and Electrical Properties. Journal of Solid State Chemistry, 131(1), 167-172. doi:10.1006/jssc.1997.7402 es_ES
dc.description.references Kilner, J. (2002). Mass transport in La2Ni1−xCoxO4+δ oxides with the K2NiF4 structure. Solid State Ionics, 154-155, 523-527. doi:10.1016/s0167-2738(02)00506-4 es_ES
dc.description.references BOEHM, E., BASSAT, J., DORDOR, P., MAUVY, F., GRENIER, J., & STEVENS, P. (2005). Oxygen diffusion and transport properties in non-stoichiometric LnNiO oxides. Solid State Ionics, 176(37-38), 2717-2725. doi:10.1016/j.ssi.2005.06.033 es_ES
dc.description.references Shahrokhi, S., Babaei, A., & Zamani, C. (2018). Reversible operation of La0·8Sr0·2MnO3 oxygen electrode infiltrated with Ruddlesden-Popper and perovskite lanthanum nickel cobaltite. International Journal of Hydrogen Energy, 43(52), 23091-23100. doi:10.1016/j.ijhydene.2018.10.186 es_ES
dc.description.references An, C. M., Song, J.-H., Kang, I., & Sammes, N. (2010). The effect of porosity gradient in a Nickel/Yttria Stabilized Zirconia anode for an anode-supported planar solid oxide fuel cell. Journal of Power Sources, 195(3), 821-824. doi:10.1016/j.jpowsour.2009.08.043 es_ES
dc.description.references Leng, Y. (2004). Performance evaluation of anode-supported solid oxide fuel cells with thin film YSZ electrolyte. International Journal of Hydrogen Energy, 29(10), 1025-1033. doi:10.1016/j.ijhydene.2004.01.009 es_ES
dc.description.references Tsai, T. (1997). Effect of LSM-YSZ cathode on thin-electrolyte solid oxide fuel cell performance. Solid State Ionics, 93(3-4), 207-217. doi:10.1016/s0167-2738(96)00524-3 es_ES
dc.description.references Serra, J. M., Uhlenbruck, S., Meulenberg, W. A., Buchkremer, H. P., & Stöver, D. (2006). Nano-structuring of solid oxide fuel cells cathodes. Topics in Catalysis, 40(1-4), 123-131. doi:10.1007/s11244-006-0114-6 es_ES
dc.description.references Zhang, X., Zhang, L., Meng, J., Zhang, W., Meng, F., Liu, X., & Meng, J. (2017). Highly enhanced electrochemical property by Mg-doping La2Ni1-Mg O4+δ (x = 0.0, 0.02, 0.05 and 0.10) cathodes for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 42(49), 29498-29510. doi:10.1016/j.ijhydene.2017.10.091 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem