Mostrar el registro sencillo del ítem
dc.contributor.author | Matrone, Francesca | es_ES |
dc.contributor.author | Martini, Massimo | es_ES |
dc.date.accessioned | 2021-07-16T08:01:42Z | |
dc.date.available | 2021-07-16T08:01:42Z | |
dc.date.issued | 2021-07-14 | |
dc.identifier.uri | http://hdl.handle.net/10251/169359 | |
dc.description.abstract | [EN] The growing availability of three-dimensional (3D) data, such as point clouds, coming from Light Detection and Ranging (LiDAR), Mobile Mapping Systems (MMSs) or Unmanned Aerial Vehicles (UAVs), provides the opportunity to rapidly generate 3D models to support the restoration, conservation, and safeguarding activities of cultural heritage (CH). The so-called scan-to-BIM process can, in fact, benefit from such data, and they can themselves be a source for further analyses or activities on the archaeological and built heritage. There are several ways to exploit this type of data, such as Historic Building Information Modelling (HBIM), mesh creation, rasterisation, classification, and semantic segmentation. The latter, referring to point clouds, is a trending topic not only in the CH domain but also in other fields like autonomous navigation, medicine or retail. Precisely in these sectors, the task of semantic segmentation has been mainly exploited and developed with artificial intelligence techniques. In particular, machine learning (ML) algorithms, and their deep learning (DL) subset, are increasingly applied and have established a solid state-of-the-art in the last half-decade. However, applications of DL techniques on heritage point clouds are still scarce; therefore, we propose to tackle this framework within the built heritage field. Starting from some previous tests with the Dynamic Graph Convolutional Neural Network (DGCNN), in this contribution close attention is paid to: i) the investigation of fine-tuned models, used as a transfer learning technique, ii) the combination of external classifiers, such as Random Forest (RF), with the artificial neural network, and iii) the evaluation of the data augmentation results for the domain-specific ArCH dataset. Finally, after taking into account the main advantages and criticalities, considerations are made on the possibility to profit by this methodology also for non-programming or domain experts. | es_ES |
dc.description.abstract | [ES] La creciente disponibilidad de datos tridimensionales (3D), como nubes de puntos, provenientes de la detección de la luz y distancia (LiDAR), sistemas de mapeado móvil (MMS) o vehículos aéreos no tripulados (UAV), brinda la oportunidad de generar rápidamente modelos 3D para apoyar las actividades de restauración, conservación y salvaguardia del patrimonio cultural (CH). El llamado proceso de escaneado-a-BIM puede, de hecho, beneficiarse de dichos datos, y ellos mismos pueden ser una fuente para futuros análisis o actividades sobre el patrimonio arqueológico y el construido. Hay varias formas de explotar este tipo de datos, como el modelado de información de edificios históricos (HBIM), la creación de mallas, la rasterización, la clasificación y la segmentación semántica. Este último, referido a las nubes de puntos, es un tema de máxima actualidad no solo en el dominio del PC sino también en otros campos como la navegación autónoma, la medicina o el comercio minorista. Precisamente en estos sectores, la tarea de la segmentación semántica se ha explotado y desarrollado principalmente con técnicas de inteligencia artificial. En particular, los algoritmos de aprendizaje automático (AA) y su subconjunto de aprendizaje profundo (AP) se aplican cada vez más y han establecido un sólido estado de la técnica en la última media década. Sin embargo, las aplicaciones de las técnicas de AP en las nubes de puntos tradicionales son todavía escasas; por tanto, nos proponemos abordar este marco dentro del ámbito del patrimonio construido. Partiendo de algunas pruebas anteriores con la Red Neural Convolucional de Gráfico Dinámico (DGCNN), en esta contribución se presta atención a: i) la investigación de modelos afinados, utilizados como técnica de aprendizaje por transferencia, ii) la combinación de clasificadores externos, como Random Forest (RF), con la red neuronal artificial, y iii) la evaluación de los resultados de aumentación de datos para el conjunto de datos específico del dominio ArCH. Finalmente, después de tener en cuenta las principales ventajas y criticidades, se hace una consideración sobre la posibilidad de beneficiarse de esta metodología también a expertos no programadores o del campo. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Virtual Archaeology Review | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Cultural heritage | es_ES |
dc.subject | Semantic segmentation | es_ES |
dc.subject | Deep learning | es_ES |
dc.subject | Deep neural networks | es_ES |
dc.subject | Point clouds | es_ES |
dc.subject | Patrimonio cultural | es_ES |
dc.subject | Segmentación semántica | es_ES |
dc.subject | Aprendizaje profundo | es_ES |
dc.subject | Redes neuronales profundas | es_ES |
dc.subject | Nubes de puntos | es_ES |
dc.title | Transfer learning and performance enhancement techniques for deep semantic segmentation of built heritage point clouds | es_ES |
dc.title.alternative | Transferencia de técnicas de aprendizaje y mejora del rendimiento en la segmentación semántica profunda de nubes de puntos del patrimonio construido | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/var.2021.15318 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Matrone, F.; Martini, M. (2021). Transfer learning and performance enhancement techniques for deep semantic segmentation of built heritage point clouds. Virtual Archaeology Review. 12(25):73-84. https://doi.org/10.4995/var.2021.15318 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/var.2021.15318 | es_ES |
dc.description.upvformatpinicio | 73 | es_ES |
dc.description.upvformatpfin | 84 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 12 | es_ES |
dc.description.issue | 25 | es_ES |
dc.identifier.eissn | 1989-9947 | |
dc.relation.pasarela | OJS\15318 | es_ES |
dc.description.references | Armeni, I., Sener, O., Zamir, A. R., Jiang, H., Brilakis, I., Fischer, M., & Savarese, S. (2016). 3D semantic parsing of large-scale indoor spaces. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1534-1543. https://doi.org/10.1109/CVPR.2016.170 | es_ES |
dc.description.references | Baraldi, L., Cornia, M., Grana, C., & Cucchiara, R. (2018). Aligning text and document illustrations: towards visually explainable digital humanities. In 24th International Conference on Pattern Recognition (ICPR), 1097-1102. IEEE. https://doi.org/10.1109/ICPR.2018.8545064 | es_ES |
dc.description.references | Bassier, M., Yousefzadeh, M., & Vergauwen, M. (2020). Comparison of 2D and 3D wall reconstruction algorithms from point cloud data for as-built BIM. Journal of Information Technology in Construction (ITcon), 25(11), 173-192. https://doi.org/10.36680/j.itcon.2020.011 | es_ES |
dc.description.references | Boulch, A., Guerry, J., Le Saux, B., & Audebert, N. (2018). SnapNet: 3D point cloud semantic labeling with 2D deep segmentation networks. Computers & Graphics, 71, 189-198. https://doi.org/10.1016/j.cag.2017.11.010 | es_ES |
dc.description.references | Chadwick, J., (2020). Google launches hieroglyphics translator that uses AI to decipher images of Ancient Egyptian script. Available at https://www.dailymail.co.uk/sciencetech/article-8540329/Google-launches-hieroglyphics-translator-uses-AI-decipher-Ancient-Egyptian-script.html Last access 24/11/2020 | es_ES |
dc.description.references | Fiorucci, M., Khoroshiltseva, M., Pontil, M., Traviglia, A., Del Bue, A., & James, S. (2020). Machine learning for cultural heritage: a survey. Pattern Recognition Letters, 133, 102-108. https://doi.org/10.1016/j.patrec.2020.02.017 | es_ES |
dc.description.references | Geiger, A., Lenz, P., Stiller, C., & Urtasun, R. (2013). Vision meets robotics: The KITTI dataset. The International Journal of Robotics Research, 32(11), 1231-1237. https://doi.org/10.1177/0278364913491297 | es_ES |
dc.description.references | Grilli, E., & Remondino, F. (2019). Classification of 3D digital heritage. Remote Sensing, 11(7), 847. https://doi.org/10.3390/rs11070847 | es_ES |
dc.description.references | Grilli, E., & Remondino, F. (2020). Machine learning generalisation across different 3D architectural heritage. ISPRS International Journal of Geo-Information, 9(6), 379. https://doi.org/10.3390/ijgi9060379 | es_ES |
dc.description.references | Grilli, E., Özdemir, E., & Remondino, F. (2019a). Application Of Machine And Deep Learning Strategies For The Classification Of Heritage Point Clouds. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-4/W18, 447-454, 2019. https://doi.org/10.5194/isprs-archives-XLII-4-W18-447-2019 | es_ES |
dc.description.references | Grilli, E., Farella, E. M., Torresani, A., & Remondino, F. (2019b). Geometric features analysis for the classification of cultural heritage point clouds. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W15, 541-548, 2019 https://doi.org/10.5194/isprs-archives-XLII-2-W15-541-2019 | es_ES |
dc.description.references | Hackel, T., Savinov, N., Ladicky, L., Wegner, J. D., Schindler, K., & Pollefeys, M. (2017). Semantic3d.net: A new large-scale point cloud classification benchmark. arXiv:1704.03847 | es_ES |
dc.description.references | He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, 770-778. arXiv:1512.03385 | es_ES |
dc.description.references | Korc, F., & Förstner, W. (2009). eTRIMS Image Database for interpreting images of man-made scenes. Dept. of Photogrammetry, University of Bonn, Tech. Rep. TR-IGG-P-2009-01. | es_ES |
dc.description.references | Landrieu, L., & Simonovsky, M. (2018). Large-scale point cloud semantic segmentation with superpoint graphs. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 4558-4567. arXiv:1711.09869 | es_ES |
dc.description.references | Llamas, J., M Lerones, P., Medina, R., Zalama, E., & Gómez-García-Bermejo, J. (2017). Classification of architectural heritage images using deep learning techniques. Applied Sciences, 7(10), 992. https://doi.org/10.3390/app7100992 | es_ES |
dc.description.references | Mathias, M., Martinovic, A., Weissenberg, J., Haegler, S., & Van | es_ES |
dc.description.references | Gool, L. (2011). Automatic architectural style recognition. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVIII-5/W16, 171-176 3. https://doi.org/10.3390/app7100992 | es_ES |
dc.description.references | Matrone, F., Grilli, E., Martini, M., Paolanti, M., Pierdicca, R., & Remondino, F. (2020a). Comparing machine and deep learning methods for large 3D heritage semantic segmentation. ISPRS International Journal of Geo-Information, 9(9), 535. https://doi.org/10.3390/ijgi9090535 | es_ES |
dc.description.references | Matrone, F., Lingua, A., Pierdicca, R., Malinverni, E. S., Paolanti, M., Grilli, E., Remondino, F., Murtiyoso, A., & Landes, T. (2020b). A benchmark for large-scale heritage point cloud semantic segmentation. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B2-2020, 1419-1426. https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-1419-2020 | es_ES |
dc.description.references | Murtiyoso, A., & Grussenmeyer, P. (2019a). Automatic heritage building point cloud segmentation and classification using geometrical rules. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W15, 821-827. https://doi.org/10.5194/isprs-archives-XLII-2-W15-821-2019 | es_ES |
dc.description.references | Murtiyoso, A., & Grussenmeyer, P. (2019b). Point cloud segmentation and semantic annotation aided by GIS data for heritage complexes. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W9, 523-528, 2019. https://doi.org/10.5194/isprs-archives-XLII-2-W9-523-2019 | es_ES |
dc.description.references | Oses, N., Dornaika, F., & Moujahid, A. (2014). Image-based delineation and classification of built heritage masonry. Remote Sensing, 6(3), 1863-1889. https://doi.org/10.3390/rs6031863 | es_ES |
dc.description.references | Park, Y., & Guldmann, J. M. (2019). Creating 3D city models with building footprints and LIDAR point cloud classification: A machine learning approach. Computers, Environment and Urban Systems, 75, 76-89. https://doi.org/10.1016/j.compenvurbsys.2019.01.004 | es_ES |
dc.description.references | Pierdicca, R., Paolanti, M., Matrone, F., Martini, M., Morbidoni, C., Malinverni, E. S. & Lingua, A. M. (2020). Point cloud semantic segmentation using a deep learning framework for cultural heritage. Remote Sensing, 12(6), 1005. https://doi.org/10.3390/rs12061005 | es_ES |
dc.description.references | Qi, C. R., Su, H., Mo, K., & Guibas, L. J. (2017). Pointnet: Deep learning on point sets for 3D classification and segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition, 652-660. arXiv:1612.00593 | es_ES |
dc.description.references | Sharafi, S., Fouladvand, S., Simpson, I., & Alvarez, J. A. B. (2016). Application of pattern recognition in detection of buried archaeological sites based on analysing environmental variables, Khorramabad Plain, West Iran. Journal of Archaeological Science: Reports, 8, 206-215. https://doi.org/10.1016/j.jasrep.2016.06.024 | es_ES |
dc.description.references | Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 | es_ES |
dc.description.references | Stathopoulou, E. K., & Remondino, F. (2019). Semantic photogrammetry: boosting image-based 3D reconstruction with semantic labeling. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42(2), W9. https://doi.org/10.5194/isprs-archives-XLII-2-W9-685-2019 | es_ES |
dc.description.references | Teboul, O., Kokkinos, I., Simon, L., Koutsourakis, P., & Paragios, N. (2012). Parsing facades with shape grammars and reinforcement learning. IEEE transactions on pattern analysis and machine intelligence, 35(7), 1744-1756. https://doi.org/10.1109/TPAMI.2012.252. | es_ES |
dc.description.references | Teruggi, S., Grilli, E., Russo, M., Fassi, F., & Remondino, F. (2020). A hierarchical machine learning approach for multi-level and multi-resolution 3D point cloud classification. Remote Sensing, 12(16), 2598. https://doi.org/10.3390/rs12162598 | es_ES |
dc.description.references | Tyleček, R., & Šára, R. (2013). Spatial pattern templates for recognition of objects with regular structure. In German Conference on Pattern Recognition, Springer, Berlin, Heidelberg, 364-374. https://doi.org/10.1007/978-3-642-40602-7_39 | es_ES |
dc.description.references | Verschoof-van der Vaart, W. B., & Lambers, K. (2019). Learning to Look at LiDAR: the use of R-CNN in the automated detection of archaeological objects in LiDAR data from the Netherlands. Journal of Computer Applications in Archaeology, 2(1). https://doi.org/10.5334/jcaa.32 | es_ES |
dc.description.references | Wang, Y., Sun, Y., Liu, Z., Sarma, S. E., Bronstein, M. M., & | es_ES |
dc.description.references | Solomon, J. M. (2019). Dynamic graph CNN for learning on point clouds. ACM Transactions On Graphics, 38(5), 1-12. arXiv:1801.07829 | es_ES |
dc.description.references | Weinmann, M., Jutzi, B., Hinz, S., & Mallet, C. (2015). Semantic point cloud interpretation based on optimal neighborhoods, relevant features and efficient classifiers. ISPRS Journal of Photogrammetry and Remote Sensing, 105, 286-304. https://doi.org/10.1016/j.isprsjprs.2015.01.016 | es_ES |
dc.description.references | Xie, Y., Tian, J., & Zhu, X. X. (2019). Linking points with labels in 3D: a review of point cloud semantic segmentation. arXiv:1908.08854 | es_ES |
dc.description.references | Yan, H., Ding, Y., Li, P., Wang, Q., Xu, Y., & Zuo, W. (2017). Mind the class weight bias: Weighted maximum mean discrepancy for unsupervised domain adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (pp. 2272-2281). arXiv:1705.00609 https://doi.org/10.1109/CVPR.2017.107 | es_ES |